
CONCEPT: ENTROPY

- Entropy (S) is the measure of _____ (randomness, chaos) in a system, surroundings, and universe.
 - □ Energy is ______ because a system is not able to convert all energy into usable energy.
- Thermodynamics: describes relationship between ______, energy, and reaction favorability.
 - □ Recall: First Law of Thermodynamics energy cannot be created nor destroyed but is _____.

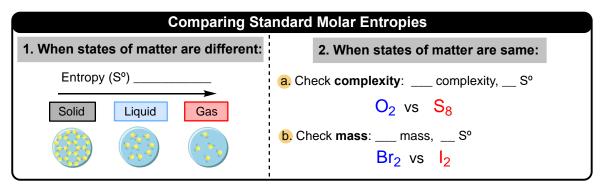
- The Second Law of Thermodynamics: states that the Entropy of the ______ is always _____.
 - □ All _____ reactions involve an increase in Entropy of the universe.

EXAMPLE: The second law of thermodynamics leads us to conclude:

- a) the total energy of the universe is constant
- b) the disorder of the universe is increasing with the passage of time
- c) the total energy of the universe is increasing with time
- d) the total entropy of the universe is decreasing with time

Factors Affecting Entropy

• There are ____ main factors that increase Entropy.


Factors Affecting Entropy

- 1. Molecular Degrees of Freedom
 - Ways in which a molecule is free to _____
- 2. Number of Arrangements
 - Molecular complexity: ____ of atoms in a substance
 - Mass
- 3. Number of Moles of Substances

CONCEPT: ENTROPY

Standard Molar Entropy (S°)

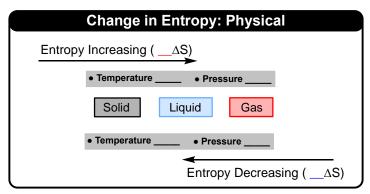
- Entropy possessed by ___ mole of a substance at standard conditions (25°C, 1 atm).
 - □ Note: different phases of a substance can exist simultaneously at standard conditions; Ex: H₂O (I) vs H₂O (g).

EXAMPLE: Select a substance with greatest molar entropy.

a) P₄ (s)

b) H₂O (I)

c) NH₃ (g)

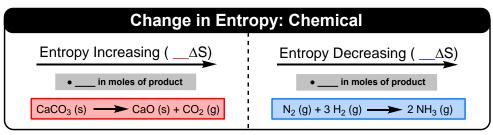

d) Li₂ (s)

e) CO₂ (g)

f) $SO_3(g)$

Change in Entropy: Physical Changes

- Entropy change (\triangle S): a measure of _____ or ____ in disorder due to physical or chemical changes.
 - \Box Increase in ΔS is due to _____ in *molecular degrees of freedom*.
 - $\hfill\Box$ ______ the degrees of freedom (molecular motion), _____ the $\Delta S.$


EXAMPLE: Predict how the entropy of the system is affected in the following process:

- $1) \; CH_4 \, (g, \, 125^{\circ}C) \; \to \; CH_4 \, (g, \, 200^{\circ}C).$
- 2) $KCIO_3$ (s) (7 L container) $\rightarrow KCIO_3$ (l) (3 L container)

CONCEPT: ENTROPY

Change in Entropy: Chemical Changes

• Entropy change of chemical reactions are determined by _____ of moles of products.

EXAMPLE: Which one of the following reactions produces a decrease in the entropy of the system?

a) KCl (s)
$$\rightarrow$$
 K⁺ (aq) + Cl⁻ (aq)

b) 2 CO (g) +
$$O_2$$
 (g) \rightarrow 2 CO₂ (g)

c) CH₃OH (I)
$$\rightarrow$$
 CO (g) + 2 H₂ (g)

d)
$$C_6H_{12}O_6$$
 (s) + 6 O_2 (g) \rightarrow 6 CO_2 (g) + 6 H_2O (l)

PRACTICE: Which reaction is most likely to have a positive ΔS of reaction?

a)
$$SiO_2(s) + 3C(s) \rightarrow SiC(s) + 2CO(g)$$

b)
$$6 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(g) \rightarrow \text{ C}_6\text{H}_{12}\text{O}_6(s) + 6 \text{ O}_2(g)$$

c) CO (g) +
$$Cl_2(g) \rightarrow COCl_2(g)$$

d) 3 NO
$$_2$$
(g) + H $_2$ O(I) \rightarrow 2 HNO $_3$ (I) + NO(g)

PRACTICE: Identify sign of entropy changes for the following processes.

- 1) freezing water to form ice
- 2) ideal gas allowed to expand in a closed container at constant T
- 3) mixing of two gases into one container
- 4) $NH_2(g)$ (1atm) $\rightarrow NH_2(g)$ (3 atm)
- 5) gas mixture transferred from larger to smaller container

PRACTICE: Select correct statement(s) below:

- a) gaseous CO₂ has higher entropy in 2 L container compared to in 5 L container
- b) N₂O (g) contains higher standard molar entropy then HI (g)
- c) NaHCO₃ (aq) + HC₂H₃O₂ (aq) \rightarrow NaC₂H₃O₂ (aq) + H₂O (I) + CO₂ (g) has a negative Δ S
- d) evaporation of water at 100°C involves greater ΔS than evaporation at 112°C