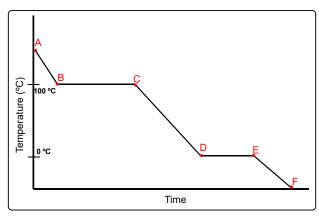

CONCEPT: HEATING AND COOLING CURVES

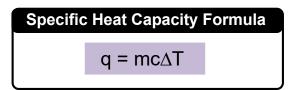
Introduction to Heating and Cooling Curves

- Heating and Cooling Curves represent amount of _____ absorbed or released by a substance during phase changes.
 - □ Heating Curve: endothermic process, ____ □ Cooling Curve: exothermic process, ____



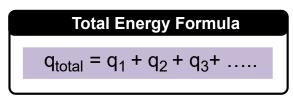
• There are some significant _____ between temperature and phase changes.

EXAMPLE: Identify line segment on the diagram where specific heat of liquid water is used to calculate energy flow.


- a) A B
- b) B C
- c) C D
- d) D E
- e) E F

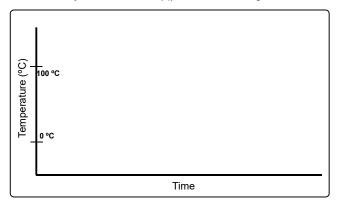
CONCEPT: HEATING AND COOLING CURVES

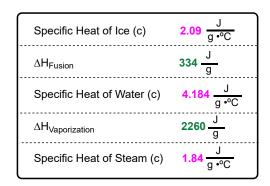
Calculations with Heating & Cooling Curves


• Recall the two formulas used to calculate heat at different parts of the curves.

Enthalpy Formula (Phase Change)
$$q = m\Delta H$$

□ We will use this formula to calculate the


involved in a heating or cooling process.



EXAMPLE: How much total energy (J) is required to convert 55.8 g of ice at -5 °C to a gas at 100 °C?

STEP 1: Draw the necessary curve and label all the changes.

STEP 2: Identify all the heats (q) involved along with necessary formulas.

STEP 3: Calculate all the heats (q) involved using appropriate specific heats and enthalpies of a substance involved.

 \Box Pay attention to the signs of enthalpy: $+\Delta H_{Fusion} = -\Delta H_{Freezing}$

STEP 4: Calculate total energy involved by adding together all heats from STEP 3.

CONCEPT: HEATING AND COOLING CURVES

PRACTICE: How much energy (kJ) is required to convert a 76.4 g acetone (MM= 58.08 g/mol) as a liquid at -30 °C to a solid at -115.0 °C?

a) -11.406 kJ

b) -39.820 kJ

- c) -22.811 kJ
- d) -82.592 kJ

Specific Heat of Solid	1.65 J
ΔH_{Fusion}	7.27 <u>kJ</u> mol
Specific Heat of Liquid	2.16 J
Specific Heat of Gas	1.29 J g •°C
Temp _{Melting}	-95.0 °C

PRACTICE: If 53.2 kJ of heat are added to a 15.5 g ice cube at -5.00 °C, what will be the resulting state and temperature of the substance?

- a) 322.5 °C, gas
- b) -3.70 °C, solid
- c) 98.82 °C, liquid
- d) 222.5 °C, gas

Specific Heat of Ice (c)	2.09 J g •°C
ΔH_{Fusion}	334 J
Specific Heat of Water (c)	4.184
ΔH _{Vaporization}	2260 J