CONCEPT: REACTION QUOTIENT

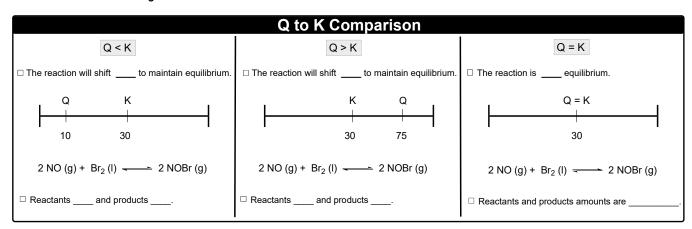
Calculating the Reaction Quotient

- The **Reaction Quotient** (___) is a _____ of product to reactant concentrations at a particular time.
 - □ Like the equilibrium constant it can be calculated by setting up an expression and ignoring ____ and ____.

EXAMPLE: The formation of gaseous ammonia is displayed by the equation given below:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

What is the reaction quotient if the following amounts (in moles) of each component is placed in a 10.0 L vessel.


 $N_2 = 0.650 \text{ moles}$

 $H_2 = 0.330 \text{ moles}$

 $NH_3 = 0.529$ moles

Comparing Q to K

- Once you've determined Q compare it to K to determine which direction the chemical reaction will shift.
 - $\hfill\Box$ ____ will always shift towards ____ in order to maintain equilibrium.
 - The balanced chemical equation will shift in the _____ direction as Q.
 - Shifting towards a side causes all molecules on that side to ____ in amount.

EXAMPLE: For the reaction: 4 HBr (g) + O_2 (g) $\rightleftharpoons 2$ Br₂ (g) + 2 H₂O (l), the equilibrium constant is 0.063 at 400 K. If the reaction quotient is 0.100, which of the following statements is true?

- a) [HBr] will decrease
- b) [O₂] will increase
- c) [Br₂] will increase
- d) [H₂O] will increase

CONCEPT: REACTION QUOTIENT

PRACTICE: For the reaction: 2 CO_2 (g) $\rightleftharpoons 2 \text{ CO}$ g) + 2 O_2 (g), the equilibrium constant is 3.12×10^{-4} at 400 K, while the reaction quotient is 4.18×10^{-4} . If initially we have 0.20 atm CO₂, 0.30 atm CO and 0.15 atm O₂, which of the following statements is **not** true?

- a) The pressure of CO₂ will be greater than 0.20 atm.
- b) The pressure of CO will be less than 0.30 atm.
- c) The pressure of O₂ will be greater than 0.15 atm.
- d) The pressure of O₂ will be less than 0.15 atm.
- e) The reaction will favor reactants.

PRACTICE: The equilibrium constant for the following gas phase reaction is 0.75 at 750 K. After a short time, analysis of a small amount of the reaction mixture shows the concentrations to be [NOBr] = 1.25 M, [NO] = 0.80 M and [Br₂] = 0.50 M. Which of the following statements is/are true?

$$2 \text{ NOBr } (g) \rightleftharpoons \text{NO } (g) + \text{Br}_2 (g)$$

- a) The reaction mixture is at equilibrium.
- b) No further reaction will occur.
- c) The partial pressure of NOBr will increase.
- d) The partial pressure of NO will increase.
- e) The reaction will shift to the left, the reactant side.