CONCEPT: BINARY ACIDS

Represent covalent compounds containing the H⁺ ion bonded to a nonmetal anion not including ______.

Binary Acid Formation				
H ⁺ +	H+ +			

EXAMPLE : Which	of the following	represents the	possible structur	re of a binar	v acid?

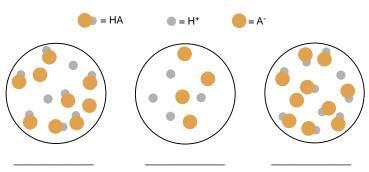
a) HCNO

b) BaCl₂

c) HF

d) LiH

Binary Acid Strength


• ____acids: The only Strong Binary Acids that exist and involve an H⁺ ion attached to a halogen.

	Weak Binary Acid	
Hydroiodic acid	Hydrobromic acid Hydrochloric acid	Hydrofluoric acid

- Recall, Strong Acids are _____ electrolytes and Weak Acids are ____ electrolytes.
 - □ Strong Acids dissociate (ionize) _____ in water and ____ a proton (H⁺) easily.
 - □ Weak Acids only partially dissociate, donates a proton _____ readily, favor _____.

Strong Acid	Weak Acid	
H ₂ O H ⁺ CI -	H ₂ O H+ CN -	
 □ Dissociates completely □ Easily donates proton (H⁺) □ Favors product formation 	□ Dissociates partially □ Less readily donates proton (H ⁺) □ Favors reactant formation	

EXAMPLE: The following represent aqueous acid solutions. Identify the strong acid, weak acid and weakest acid.

CONCEPT: BINARY ACIDS

a) CH₄

Comparing Binary Acid Strength

 The strength of Binary Acids is based on the electronegativity or atomic radius of the non-_____ element. ΕN Electronegativity (EN) ____ Atomic Radius (AR) Н He F Li С Ν 0 Ne Ве Na Mg ΑI Si Р S CI Ar Cu Zn Ga Ge As Se Br Kr Κ Ca Sc Ti V Cr Mn Fe Co Ni Υ Ag Cd In Sn Sb Те Rb Sr Zr Nb Mo Tc Ru Rh Pd 1 Xe Pb Ва Hf W Re Os Ir Pt Au Hg ΤI Bi Ро At Rn La Ta Rg Cn Nh Fl Mc Lv Ts Og AR Ra Ac Rf Db Sg Bh Hs Mt Ds When comparing the strengths of Binary Acids: □ If the elements are in the same period then use ______ to compare their acid strengths. - The _____ then the ____ acidic. □ If the elements are in the same group then use to compare their acid strengths. - The _____ then the ____ acidic. **EXAMPLE**: Which is the weakest acid from the following? a) HF b) HCI c) HI e) HBr d) All are equal. • If the Binary Acids are separated by _____ period then use electronegativity to compare their acid strengths. □ If separated by _____ period then use atomic radius to compare their acid strengths. **EXAMPLE**: Which is the weakest acid from the following? b) HF e) H₂S d) All are equal a) H₂Se c) H₂Te **PRACTICE**: Which of the following acids would be classified as the strongest?

c) H₂S

d) PH₃

e) BH₃

b) H₂Te