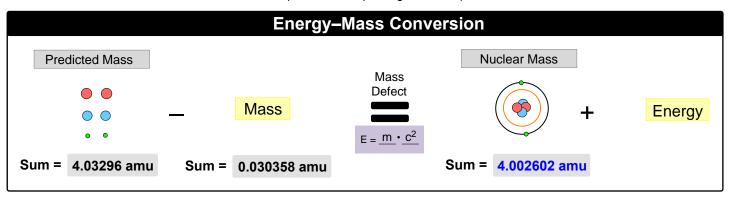
CONCEPT: MASS DEFECT

Calculating Predicted Mass

• Predicted Mass represents the mass of _____ subatomic particles within a given element.

□ Recall, 1 AMU = _____ kg


Subatomic Particle	Actual Mass (kg)	Relative Mass (amu)		
Neutron	1.67493 x 10 ⁻²⁷			
Proton	1.67262 x 10 ⁻²⁷			
Electron	0.00091 x 10 ⁻²⁷			

EXAMPLE: Calculate the predicted mass for a helium-4 isotope.

Energy to Mass Conversion

	TI	1 1 1 11 1	()	1 1		1 (1 (1	
lacktriangle	The	Law states that	energy cannot be	de created nor	aestroyea,	but instead	changes forms.

- □ Mass Defect (___): the _____ lost from combining subatomic particles in the formation of an isotope.
- □ Recall that bond formation involves the _____ of energy which is why it is to the right of the equation.
 - Seen in the opposite direction, energy is ______ to break up the isotope.
- □ **Nuclear Mass:** the _____ mass (atomic mass) of a given isotope.

□ As a result of energy being converted to mass: _____ mass is always greater than _____ mass.

EXAMPLE: What is the mass defect (in kg) of calcium-42 if its atomic mass is 41.958618 amu?

CONCEPT: MASS DEFECT

Calculating Mass Defect

- If the nuclear mass of an isotope is not given then more extensive calculations will be needed to calculate mass defect.
 - □ In these instances, nuclear mass is the difference between _____ number of the isotope and mass of all ____.

Nuclear Mass Formula

Nuclear Mass = [_____ Number – (# e⁻) •(_____ amu)]

EXAMPLE: Calculate the mass defect (in amu) for oxygen-16. (1 neutron = 1.00866 amu, 1 proton = 1.00727 amu, & 1 electron = 0.00055 amu).

STEP 1: To find predicted mass, find the number of ______ within the isotope and add their masses together.

STEP 2: To find nuclear mass, subtract the mass number by the combined mass of all ______.

STEP 3: Use the calculated masses from STEPS 1 and 2 to determine the mass defect.

PRACTICE: Calculate the mass defect (in mg) for the following isotope. (1 neutron = 1.00866 amu, 1 proton = 1.00727 amu, & 1 electron = 0.00055 amu).

14_C