CONCEPT: BOILING POINT ELEVATION

• ,	boiling point of the solvent. t the addition of the solute. the addition of the solute.				
Boiling Point Elevation					
A Boiling Point Elevation Formula	© Variables	O	Constants		
Δ T _b =•• Boiling Point of Solution BP = BP+	□ ΔT _b = Change in Boiling Point □ = van't Hoff Factor □ = Boiling Point Constant of Solvent in □ = molality of solution in	Solvent Water Benzene, C ₆ H ₆ Chloroform, CHCl ₃ Ethanol, C ₂ H ₅ OH	61.2	k _b (°C/m) 0.51 2.53 3.60 1.20	

□ Recall, if a compound is covalent, nonvolatile or non-ionic then its van't Hoff factor is equal to _____.

EXAMPLE: Calculate the boiling point of a 3.71 m aqueous CaBr₂ solution.

PRACTICE: An ethylene glycol solution contains 25.2 g of ethylene glycol ($C_2H_6O_2$) in 99.5 mL of water. Determine the change in boiling point. Assume a density of 1.00 g/mL for water.

a) 18.4 °C

b) 9.22 °C

c) 2.08 °C

d) 0.572 °C

CONCEPT: BOILING POINT ELEVATION

PRACTICE: Pure water boils at 100°C. What is the new boiling point of water after the addition of 13.12 g aluminu	m
chloride, AlCl ₃ , to 615 g water?	

a) 100.25 °C

b) 100.08 °C

c) 100.33 °C

d) 100.16 °C

PRACTICE: What is the molality of glucose in an aqueous solution if the boiling point of the solution is 103.15°C?

a) 0.15 m

b) 0.29 m

c) 6.18 m

d) 1.6 m

PRACTICE: Carbon dioxide is dissolved in 722 mL of benzene with a density of 1.59 g/mL. What mass of carbon dioxide would you add to make the boiling point of the solution 104.7°C?

a) 11 g

b) 500 g

c) 22.9 g

d) 491 g