CONCEPT: THE ELECTRON CONFIGURATION: IONS

Electron Configurations (Cations)

- With a cation, we first remove electrons from the ______ shell number (*n* value).
 - ☐ The quantum number provides the shell number or energy level of the electron.

$$1s^2$$
 $2s^2$ $2p^6$ $3s^2$ $3p^6$

EXAMPLE: Write the condensed electron configuration for the titanium (III) ion.

- **STEP 1:** Provide the electron configuration for the neutral form of the element.
- **STEP 2:** Begin removing electron(s) from the _____ numbered shell to obtain the desired charge.
 - □ When in the same numbered shell (2s vs 2p) use Auf Bau Principle to remove the higher energy electron(s) first.

Electron Configurations (Anions)

- With an anion, add an electron(s) to the orbitals with available space.
 - □ **Note:** For an anion, the nonmetal keeps its base name but has its ending changed to ______.

EXAMPLE: Write the full electron configuration for the nitride ion.

- **STEP 1:** Provide the electron configuration for the neutral form of the element.
- STEP 2: Add electron(s) to the orbitals that can accommodate more electrons.

CONCEPT: THE ELECTRON CONFIGURATION: IONS
CONCEPT: THE ELECTRON CONFIGURATION: IONS PRACTICE: What is the full electron configuration of the selenide ion?
PRACTICE: Determine the electron configuration for the CI+ ion.
PRACTICE: Determine the electron configuration and electron orbital diagram for the silver ion.