
CONCEPT: CELL POTENTIAL: ΔG AND K

- Recall, a spontaneous reaction possesses E^o_{cell} ____ 0, ∆G^o ____ 0 and K ____ 1.
 - □ The relationship between these 3 variables and spontaneity can be observed under the following diagram:

EXAMPLE: Calculate the standard cell potential for the following reaction if 10 moles of electrons are transferred.

$$P_4(s) + 5 O_2(g) \longrightarrow P_4O_{10}(s)$$

Substance	G° (kJ/mol)
P ₄ (s)	0.00
O ₂ (g)	0.00
P ₄ O ₁₀ (s)	-2984

PRACTICE: Given the following standard reduction potentials, determine K_{sp} for Hg₂Cl₂(s) at 25 °C.

$$Hg_2^{2+}$$
 (aq) + 2 e - \longrightarrow 2 Hg (I)

$$E^{\circ}_{red} = + 0.789 \text{ V}$$

$$Hg_2Cl_2(s) + 2e^- \longrightarrow 2Hg(l) + 2Cl^-(ag)$$

$$E^{\circ}_{red} = + 0.271 \text{ V}$$

CONCEPT: CELL POTENTIAL: ΔG AND K

PRACTICE: What is the value of the cell potential for the 4 electron transfer reaction below if the equilibrium mixture contains 0.255 M of CH₄, 1.10 M CO₂, 0.388 M CO and 0.250 M H₂ at 25°C?

$$CH_4(g) + CO_2(g) \longrightarrow 2 CO(g) + 2 H_2(g)$$

PRACTICE: Given the reaction: $2 \text{ Cl}_2(g) + 2 \text{ H}_2\text{O}(g) \implies 4 \text{ HCl}(g) + \text{O}_2(g) \text{ Kp} = 7.5 \text{x} 10^{-2}$, calculate the Gibbs Free Energy change for the reaction below at 30°C .

8 HCl (g) + 2 O₂ (g)
$$\longrightarrow$$
 4 Cl₂ (g) + 4 H₂O (g)