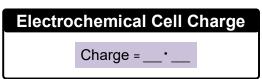
CONCEPT: CELL POTENTIAL AND GIBBS FREE ENERGY

- In terms of electrochemical cells, Gibbs Free Energy (____) represents the _____ electrical work that can be created.
 - □ Connections between spontaneity, Gibbs Free Energy and standard cell potential are illustrated by the formula:

E _{Cell} – ΔG Formula		
□ <mark>△G°</mark> = Gibbs Free Energy in		
ΔG° =··	= moles of e ⁻ transferred = Faraday's Constant in = Cell Potential in (V)	

EXAMPLE: Calculate the maximum electrical work that can be produced by this cell.

$$3 \text{ Co}^{2+} (aq) + 2 \text{ Cr} (s) \longrightarrow 2 \text{ Cr}^{3+} (aq) + 3 \text{ Co} (s)$$


Given the following reduction potentials:

$$E^{\circ}_{red} = -0.74 \text{ Volts}$$

$$E^{\circ}_{red} = -0.28 \text{ Volts}$$

Faraday's Constant

- Represents the _____ (C) in coulombs of 1 mole of electrons and is named after the British scientist Michael Faraday.
 - □ The _____ that passes through the cell equals the moles of e⁻ times Faraday's constant.

□ The conversion factor between coulombs and Joules is 1 C = _____ J/V.

Faraday's Constant Units		
When using C	Conversion Factor	When using J/V
C		J
mol e ⁻		V ∙mol e [−]

EXAMPLE: Determine the overall charge (C) when an aluminum solid is oxidized as an anode.

CONCEPT: CELL POTENTIAL AND GIBBS FREE ENERGY

PRACTICE: What is the gibbs free energy change for the given reaction at 25°C?

$$Au^{3+}$$
 (aq) + 3 Li (s) — Au (s) + 3 Li⁺ (aq)

Given the following reduction potentials:

$$Au^{3+}(aq) + 3 e^{-}$$
 Au (s)

$$E^{\circ}_{red} = -3.04 \text{ Volts}$$

PRACTICE: The reduction of chlorate is given by the equation:

$$CIO_{3}^{-}$$
 (aq) + 6 $H_{3}O^{+}$ (aq) \longrightarrow CI^{-} (aq) + 9 $H_{2}O$ (I)

If the standard cell potential is given as 1.373 V, how many electrons are transferred under standard conditions?

Substance	G° _f (kJ/mol)
CIO ₃ ⁻ (aq)	- 717.5
$H_3O^+(aq)$	- 103.4
Cl - (aq)	- 131.2
H ₂ O (I)	- 237.1