
CONCEPT: INTRO TO ELECTROCHEMICAL CELLS

- Electrochemical Cell: an instrument composed of 2 half-cells connected by a conductive wire.
 - □ **Half-cell**: A container with a single _____ immersed in an **electrolyte solution** representing a half-reaction.
 - □ Through a redox reaction, the transfer of electrons between half-cells or electricity.

- An electrochemical cell has a *cell potential*; _____ (standard conditions) or ____ (nonstandard conditions).
 - □ **Cell Potential**: difference in potential energy as electrons travel between the 2 half cells, measured in _____ (V).
 - Recall: Standard conditions are 25°C, 1M, 1 atm, pH = 7.
 - □ There are two types of electrochemical cells: (1) ______ electricity, (2) _____ electricity.
 - Galvanic Cell: cell with a ____ cell potential meaning electricity is _____.
 - Electrolytic Cell: cell with a ____ cell potential meaning electricity is _____.

EXAMPLE: Which of the following electrochemical cells would use up the largest quantity of electricity at 25°C?

- a) Electrochemical Cell A (E°_{cell} = -0.75 V)
- b) Electrochemical Cell B (E°_{cell} = +1.30 V)
- c) Electrochemical Cell C (E°_{cell} = +0.08 V)
- d) Electrochemical Cell D (E°_{cell} = -1.42 V)