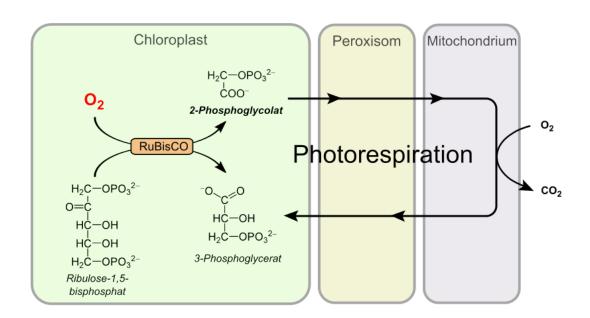

CONCEPT: LIGHT INDEPENDENT REACTIONS (CALVIN CYCLE)

Carbon Fixation (Calvin Cycle)

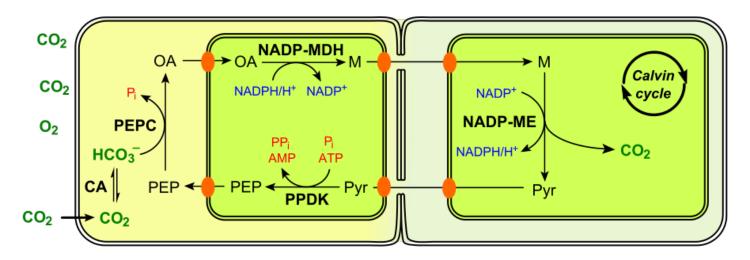
- Carbon fixation uses ATP and NADPH to fix carbon from CO₂ in order to create sugar in C3 plants (majority of plants)
 - □ CO₂ is attached to ribulose 1,5 bisphosphate (5 carbon sugar)
 - Creates two 3-phosphoglycerates (two three carbon sugars) (Step 1)
 - Reduced to form glyceraldehyde 3-phosphate (Step 2)
 - Releases O₂ as _____ product
 - □ **RUBISCO** (ribulose bisphophate carboxylase) catalyzes carbon fixation
 - Works slowly so plants need a lot of it (most abundant protein on earth)
 - □ ATP and NADPH are used to generate more ribulose 1,5 bisphosphate (Step 3)
 - □ 3 CO₂ makes one glyceraldehyde 3-phosphate ______ 9 ATP and 6 NADPH

EXAMPLE: Overview of the Calvin Cycle

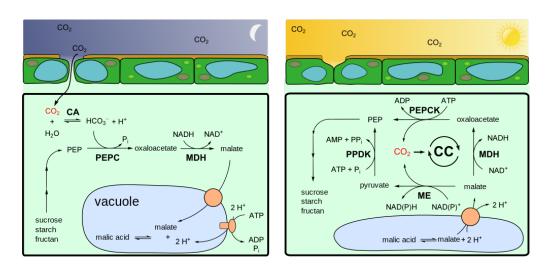


- Once the glyceraldehyde 3-phosphate is created it can be used in a number of ways
 - □ Converted into starch
 - □ Used in glycolysis to create ATP
 - □ Made into sucrose or other sugars

Carbon Fixation in C4 and CAM Plants


- Carbon fixation that occurs in C3 plants (most plants) is not efficient in ______ environments
 - □ Stroma (pores) in the plant leaves _____ when its hot to prevent loss of water
 - Unfortunately, this prevents gas exchange (entering of CO₂ into the plant) causing build up of O₂
 - □ **RUBISCO** can bind to CO₂ or O₂ each produces a different product
 - CO₂: Produces glyceraldehyde 3-phosphate photosynthesis
 - O₂: Produces phosphoglycolate photorespiration (big waste of plant energy)
 - □ ATP and NADPH are used to generate more ribulose 1,5 bisphosphate (Step 3)

EXAMPLE: Photorespiration in plant cells


- C4 plants (corn, certain types of grasses) handle O2 build up by physically separating carbon fixation reactions
 - □ Mesophyll cells light-dependent reaction and fixation of CO₂ to malate molecule
 - □ Bundle sheath cells CO₂ is released from malate and continues along the C3 Calvin cycle pathway
 - RUBISCO is isolated from accumulation of O₂ to prevent wasting energy on photorespiration

EXAMPLE: C4 photosynthesis pathway

- CAM plants (cacti) handle O₂ build up by differentially controlling CO₂ at different points in the day
 - ☐ At night, when it is cool the stroma is open
 - CO₂ is fixed using RUBISCO and the C3 pathways
 - □ In daytime, when it is hot the stroma is closed
 - CO₂ is fixed to malate and stored in a vacuole
 - When the stroma closes CO₂-malates leaves the vacuole, is released and fixed by RUBISCO

EXAMPLE: Transition between day and night in CAM plants

PRACTICE:

- 1. What is the function of RUBISCO in carbon fixation?
 - a. Catalyzes carbon fixation
 - b. Convert carbon into starch
 - c. Promoting gas exchange
 - d. Opening and closing the stroma

- 2. Why does the Calvin cycle require light?
 - a. Because light forms ATP through the light dependent reactions
 - b. Because light forms NADPH through the light dependent reactions
 - c. Because light forms CO₂ through the light dependent reactions
 - d. Because light forms O₂ through the light dependent reactions

3.	How many molecules	of CO2 are required to	create one glyceraldel	yde 3-phosphate?
	0 1			

- a. 1 b. 2
- c. 3
- d. 4

- $4. \quad \text{True or False: RUBISCO only binds to CO_2}.$
 - a. True
 - b. False

- 5. Which of the following plants handles O_2 buildup by physically separating RUBISCO from O_2 ? a. C3 Plants

 - b. C4 Plants
 - c. CAM Plants