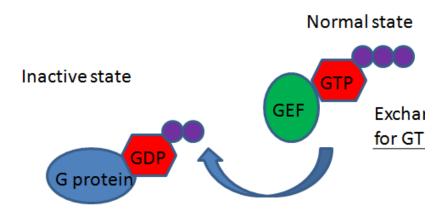

CONCEPT: PROTEIN REGULATION

Covalent Modifications

i

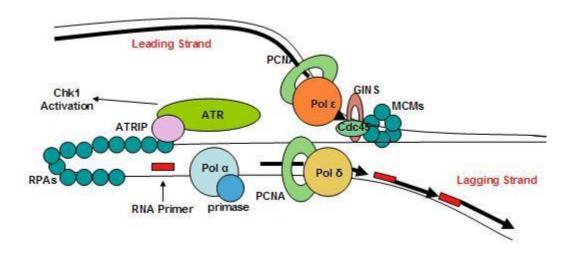
- □ **Phosphorylation** is the reversible addition of a phosphate group to one or more amino acid side chains
 - Carries two negative charges and can cause conformational change
 - Kinases catalyze addition of the phosphate group; *Phosphatases* causes removal (dephosphorylation)
- □ **Glycosylation** is the reversible addition of carbohydrates
 - *N-linked* if attached to nitrogen atom; *O-linked* if attached to oxygen atom
- □ Modifications also occur by the _____ addition of lipids
 - Glycolipids are lipids linked to oligosaccharides (sugars) which can be added to proteins to anchor them
 - Other types include *prenylation*, *palmitoylation* and *N-myristolyation* (each named based on the lipid type)
- □ **Ubiquitination** is the addition of ubiquitin proteins which target the protein for degradation
- □ Cleavage can occur to irreversibly remove a section of the protein
 - Cleavage of targeting signal sequences allows release of proteins sequestered in one area



EXAMPLE: Types of protein modifications

GTP and Calcium Binding

- - □ Proteins bind GTP in a special GTP-binding domain
 - GTP hydrolysis can control itself OR the function of other proteins to which the GTP-protein is bound
 - □ GTP hydrolysis to GDP results in conformational changes that inactivates the GTP- protein
 - ☐ The **Ras** protein is a major GTP binding cellular regulator
 - Misregulation of this protein leads to a variety of cancers
- Binding of Calcium _____ a variety of proteins
 - □ Calcium concentration is low in the cytosol
 - Changes in concentration can cause activation/inactivation of calcium binding proteins


EXAMPLE: G proteins are inactive when bound to GDP and active when bound to GTP

Protein Machines

- Protein Machines are protein complexes made up of 10+ proteins
 - □ These machines have _____ and dynamic parts
 - Each part has to be positioned in a specific way to work properly
 - □ Control of these machines depends on control of each individual part
 - Many layers of regulation

EXAMPLE: A protein machine consists of many parts that are each independently regulated

PRACTICE

- 1. Which of the following is not a protein modification that allows for protein regulation?
 - a. Ubiquitination
 - b. Phosphorylation
 - c. Glycosylation
 - d. Noncovalent interactions in the binding site

2. Hydrolysis of GTP to GDP causes what to occur to a GTP-Binding protein a. It marks it for degradation b. It cleaves it c. It activates it d. It inactivates it
3. True or False: To regulate large protein complexes there is a single, powerful regulator of the entire complex.a. Trueb. False