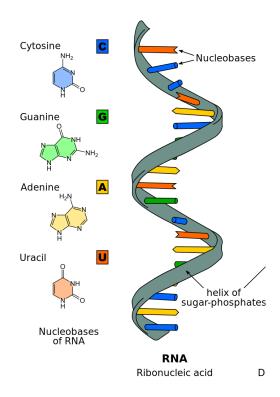

CONCEPT: RNA AND THE ORIGINS OF LIFE

Properties of RNA

 RNA has unique properties which indicate it 	both DNA and Proteins

- □ RNA can fold into complex 3D structures
- □ **Ribozymes** are RNA molecules that can catalyze chemical reactions
 - Form by creating complex structures which catalyze chemical reactions
- □ The shape of RNA can respond to small molecules, or other RNAs
 - Conformational changes allow for regulation of various chemical reactions

EXAMPLE: 3D Structure of a Ribozyme


Requirements of Life

Life requires the ability to	information
□ <i>Heredity</i> , which is the ability to pass genetic inform	nation to offspring is required for life
- Today, the mechanisms of heredity require	e significant amounts of energy and organic chemicals
□ Polynucleotide chains are able to store information	n
- Guide their own formation and replication	
Life requires the ability to	(catalyze) chemical reactions
☐ Life sustaining chemical reactions occur too slowly	y to happen by chance

- RNA can catalyze chemical reactions

- □ Today, RNA has the ability to catalyze the formation of proteins (rRNA in ribosomes)
 - Likely a remnant of evolution: RNAs were thought to be present before proteins

EXAMPLE: RNA as an information storage molecule

Evolution of RNA

- There were likely three main phases in the history of life
 - 1. The pre-RNA world provided the ability to catalyze reactions before the creation of RNA
 - There likely was a polymerase-like structure that was chemically simpler than RNA
 - Eventually, this transitioned into RNA and may have even catalyzed the first RNA molecules
 - This potentially could have occurred before the first cell arose
 - 2. The RNA world
 - Chemical reactions likely occurred in compartments to _____ chemical reactions
 - The first cell likely had a membrane bilayer with catalytic RNA inside
 - Because it was in a separate compartment, it could evolve
 - At this time the RNA molecules likely could self-replicate

3. Eventually, a transition to DNA occurred	
- It is more	_ than RNA – deoxyribose is more complicated to make than ribose

- Eventually became the permanent information storage molecule

PRACTICE

- 1. Choose all of the following properties that indicates RNA pre-dated both DNA and proteins.
 - a. RNA has the ability to catalyze chemical reactions
 - b. RNA is extremely stable
 - c. RNA can fold into complex 3D shapes
 - d. RNA can store information
 - e. RNA is more complicated to make than DNA

- 2. Ribozymes have catalytic functions because of why?a. They bind to proteins, which allow them to exert their effect on other molecules
 - b. They are translated into proteins
 - c. They can fold into 3D conformations that act similarly to proteins
 - d. None of the above