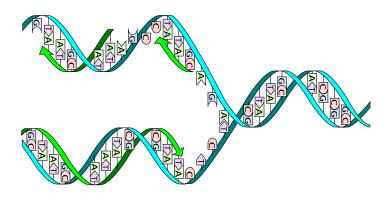

## **CONCEPT:** HELICAL FORMATIONS OF DNA

- Supercoiling is a \_\_\_\_\_\_ of helical DNA
  - □ **Supercoiled** DNA is DNA that has twisted upon itself
    - Can alternate between supercoiled and relaxed states
    - Occurs in linear or circular DNA
  - □ **Topoisomerases** are enzymes that convert DNA between supercoiled and relaxed states
    - Type 1: introduces single-strand breaks into DNA to release tension
    - Type 2: introduces double-strand breaks into DNA to release tension


## **EXAMPLE:** Example of a circular supercoiled DNA molecule



- Denaturing (separating) and renaturing (rejoining) strands of DNA happens in cells, and in laboratories
   Denaturing of DNA strands occurs by \_\_\_\_\_\_\_\_ hydrogen bonds
  - Can occur through an increase in heat, change in pH, and exposure to UV light
  - $\Box$  The **DNA melting temperature** ( $T_m$ ) is a specific temperature that separates DNA strands
    - Depends on the number of hydrogen bonds

- G-C pairs have an extra bond, therefore raising the energy and temperature needed to break them

## **EXAMPLE:** Denaturation of the DNA double helix



## **PRACTICE**

- 1. Which of the following property is false regarding supercoiled DNA?
  - a. Supercoiling is a helix that has twisted upon itself
  - b. Supercoiling can be fixed by topoisomerases
  - c. Supercoiling only happens in circular DNA
  - d. Supercoiling can happen in both circular and linear DNA

| 2. | Which enzyme is responsible for repairing supercoiling through double strand breaks?  a. Topoisomerase Type 1  b. Topoisomerase Type 2  c. Topoisomerase Type 3 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                 |
|    |                                                                                                                                                                 |

- What is the name of the temperature that causes two complementary DNA strands to separate?
   a. Annealing Temperature
   b. Melting Temperature

  - c. Dissolving Temperatured. Separation Temperature