
CONCEPT: CELL CYCLE CONTROL

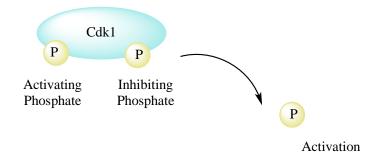
<u>Overview</u>

- Cell cycle control relies on a core group of molecular _____ that turn on and off different steps of the cell cycle
 - □ Cyclins are proteins that turn protein kinases on and off
 - □ Cyclin-dependent kinases (Cdk) are cell cycle control protein kinases that are regulated by cyclins
 - Regulate cell cycle events by phosphorylating or dephosphorylated other proteins
 - □ Cdk protein levels remain the same but cyclin levels vary, which controls activation/inactivation of Cdks
 - Rise is due to slow increase in gene transcription
 - Rapid fall is due to protein degradation

EXAMPLE: Rise and Fall of Cdks and cyclins

- □ Checkpoints are _____ within the cell cycle that Cdks act
 - G1 Checkpoint: Cell cycle pauses to repair damaged DNA before S phase
 - START: Point of no return when cell leaves G1 and enters S phase
 - S Checkpoint: Cell pauses to monitor integrity of DNA replication
 - G2 Checkpoint: Cell pauses to prevent division until DNA replication is complete

EXAMPLE: Cell Cycle Checkpoints


• There are a few important Cdks to know

Cyclins	Function
G1/S cyclin	Activate Cdks in late G1 – triggers START progression
G1 cyclins	Controls G1/S cyclins
S cyclins	Actiates Cdks after START to stimulate replication
M cyclins	Tiggers entry into Mitosis

Regulation

- Regulation of Cdks occurs in numerous ways
 - □ **Cdk inhibitor phosphate**: Cdks must be dephosphorylated at a specific site to become active
 - Cdks must be phosphorylated at one site and dephosphorylated at ______ to be active
 - Cdc25 is responsible for removing the inhibitory phosphate
 - □ **Cdk inhibitors:** Bind and block cyclin-Cdk complexes
 - □ Cyclin levels: High = active Cdks, Low = inactive Cdks
 - Anaphase-promoting complex (APC) degrades M and S cyclins by labeling them with ubiquitin

EXAMPLE: Cdk1 activation through dephosphorylation

PRACTICE:

- 1. True or False: Often, Cdks have to be dephosphorylated to become activated.
 - a. True
 - b. False

- 2. Which of the following cell cycle checkpoints occurs immediately before the start of S phase?
 - a. G₁
 - b. S
 - c. M

- Which of the following proteins is responsible for removing the inhibitory phosphate on Cdks?
 a. S cyclins
 b. APC

 - c. M cyclinsd. Cdc25