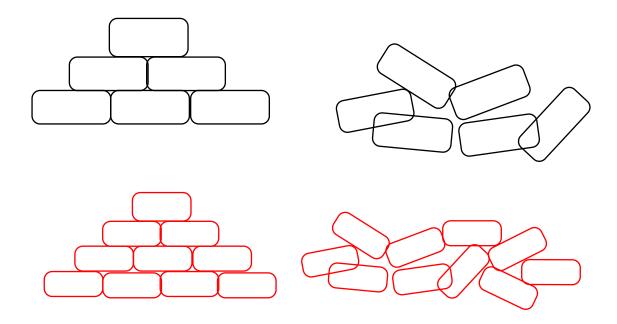
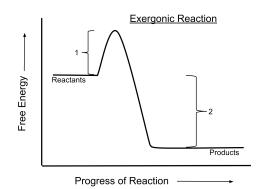
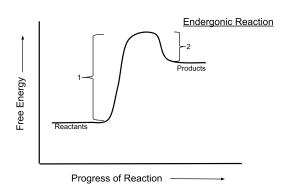

CONCEPT: GIBBS FREE ENERGY AND EQUILIBRIUM

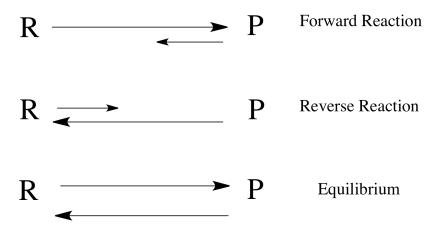

- Gibbs free energy (G) is a measure to determine if a chemical reaction will occur spontaneously
 - □ Spontaneous reactions are those which are thermodynamically favorable (can occur without outside help)
 - Increase **entropy** (disorder) of the universe
 - \Box Gibbs free energy can be calculated at a particular time point (**G**) or as a change occurring during a reaction (Δ **G**)
 - ∆G changes as a reaction moves towards equilibrium
 - □ **Equilibrium** is a state where the chemical reaction equally occurs in forward and reverse
 - Cells do not exist at equilibrium life depends on having reactions that do not reach equilibrium

EXAMPLE: Ordered and disordered blocks model a spontaneous reaction


- ΔG and the **standard free energy change** (ΔG°) measure spontaneity of chemical reactions
 - \Box Δ G calculates spontaneity for a reaction in a single direction with known concentrations of products and reactants
 - Used to measure real life reactions and is highly sensitive to reactant and product concentrations
 - \square \triangle G° calculates spontaneity for a reaction occurring in standard conditions
 - Temperature = 25°C and Pressure = 1atm
 - Used to compare thermodynamics of many reactions because its not sensitive to concentrations


EXAMPLE: Model demonstrating the need for the standard free energy change formula

- Chemical reactions can be classified as exergonic (energy releasing) or endergonic (energy absorbing)
 - $\hfill\Box$ Exergonic reactions are more thermodynamically favorable
 - ΔG will be *negative* because free energy of products is lower than free energy of reactants
 - □ **Endergonic** reactions are less thermodynamically favorable
 - ΔG will be *positive* because free energy of products is higher than free energy of reactants
 - $\hfill\Box$ At equilibrium $\Delta G{=}0$ and no NET reactions occur


EXAMPLE: Graphs of exergonic and endergonic reactions

- Measurements of free energy can also provide information on distance to equilibrium
 - ☐ The **Equilibrium constant** (K_{eq}) is a ratio of products to reactants
 - Measures how far a reaction needs to proceed before being at equilibrium
 - $\hfill\Box$ K_{eq} can also provide information on directionality of the reaction
 - K_{eq} > 0.5 then there are more products reaction will proceed in reverse
 - K_{eq}<0.5 then there are more reactants reaction will proceed forward
 - At equilibrium K_{eq}=0.5 and no reactions occur
 - □ **Steady state** refers to concentration stability of reactants and products (NOT the same as equilibrium)
 - Nutrients that are continually flowing into the cell and being used up are at steady state, not equilibrium

EXAMPLE: Ratio of reactants and products determines the directionality of the reaction

PREVIOUS CLUTCH VIDEOS:

- Click here for an explanation of the Gibbs free energy equation terms
- Click here for a review of calculating Gibbs free energy
- Click here for a review of the relationship between Gibbs free energy and equilibrium