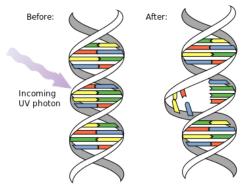

CONCEPT: DNA REPAIR AND RECOMBINATION

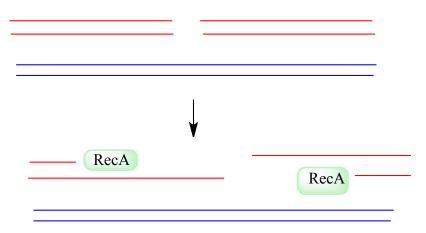
Overview


- There are many different ______ of DNA damage
 - □ **Deupriation** is when purine bases (A and G) are spontaneously lost (like missing teeth)

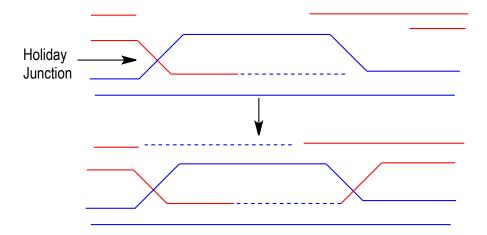
□ **Deamination** is when a base is chemically converted into a different base (cytosine to uracil)

□ **Thymine dimer** is when UV light exposure causes two adjacent thymines to dimerize

- □ **Double Strand Break** is when both strands of a DNA double helix are damaged
- If damaged DNA is not repaired it can cause serious diseases
 - □ Xeoderma pigmentosum "light allergy" have inability to repair UV lesions


Repair mechanisms	
Each mutation is repaired by the cell in a	way
□ Mismatch repair fixes mismatched or lost bases	
- Mismatched nucleotides cause distortion in doubl	e helix
□ Base Excision Repair (BER) removes nucleotide dama	ge caused by chemicals (Ex: deamination)
- DNA glycosylase is the enzyme that cleaves out	uracil for repair
□ Nucleotide excision repair (NER) fixes bulky lesions (E	x: thymine dimers)
- Repair involves a "cut and paste" method;	
- DNA ligase reseals the cut	
□ Double Strand Break is when both strands of a DNA do	uble helix are damaged

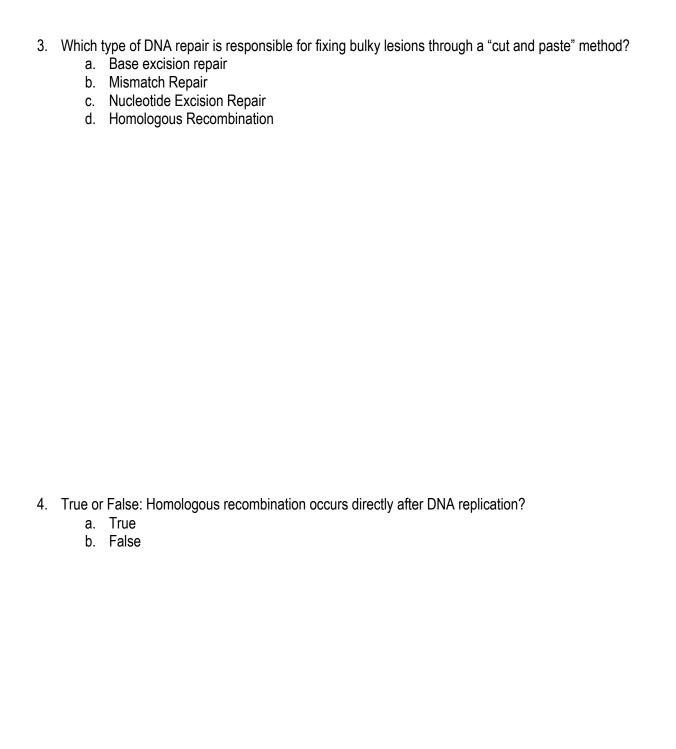
- Nonhomologous end joining is when the cell just sticks the broken ends back together


- Homologous recombination is when the cell uses undamaged DNA as a template to repair the break

Homologous Recombination

- Homologous recombination repairs double strand breaks in 8 steps
 - ☐ Homologous recombination occurs shortly after DNA has been replicated
 - Undamaged copy can act as a template
 - 1. Double Strand Break occurs
 - 2. RecA protein binds to a single strand of broken DNA
 - Also binds to single strand of undamaged DNA

- 3. Single broken strand and single undamaged strand interact with their complementary regions
- 4. The DNA repair begins using the undamaged strand as a template
- 5. **Holiday junctions** form. These are connections between four DNA strands on two helices
 - Sometimes called cross-strand exchange



6. Branch migration occurs when the cross-strand point (holiday junction) moves down the DNA	
- Movement increases the amount of DNA template available for repair	
7. DNA repair is completed	
8. Holiday junction is cleaved and the two DNA strands are rejoined to form two separate DNA helices	
- Cleavage can result crossing-over causing DNA exchange outside of the damaged area (break point)	
- Cleavage can result in non-complementary regions between the two helices where holiday junctions we	re
- Can stay in genome OR be corrected through base excision repair	
Non-Crossover Crossover	

PRACTICE:

- 1. Which of the following is not a type of DNA damage repair?
 - a. Mismatch repair
 - b. Base Excision repair
 - c. Lost nucleotide repair
 - d. Double Strand Break repair

- 2. Which of the following types of DNA damage occurs when a base is chemically converted into another base?
 - a. Depurination
 - b. Deaminatino
 - c. Thymine Dimer

