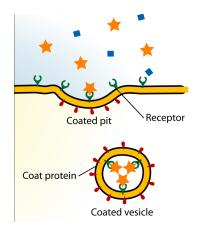

CONCEPT: VESICULAR BUDDING, TRANSPORT, AND COATS

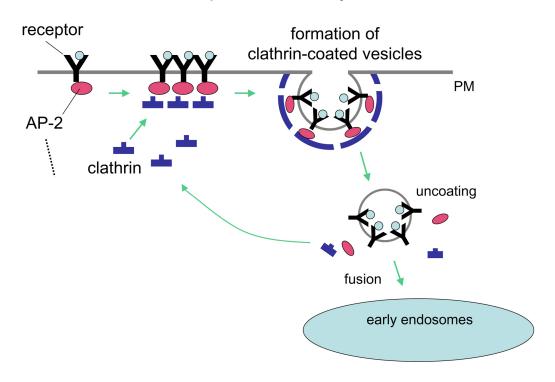
Overview

- Transport vesicles carry molecules between organelles and the plasma membrane
 - □ Secretory pathway beings in the ER, moves to the Golgi, and ends at the cell surface
 - □ Endocytic pathway beings at the plasma membrane, and brings molecules into different organelles

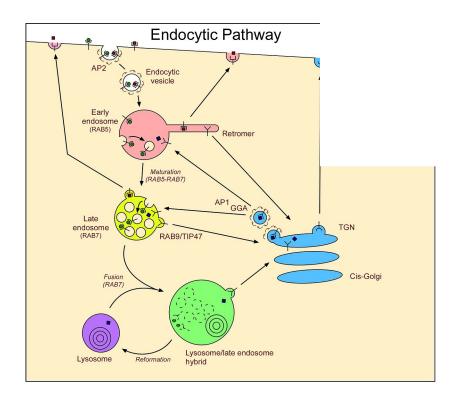

EXAMPLE: Secretory pathway in the cell

Vesicular Coats

- Many times, vesicles bud from organelles or other cellular structures surrounded by a ______ coat
 - □ There are three main types of vesicular coats
 - Clathrin coated vesicles travel between the Golgi and plasma membrane
 - COPI coated vesicles bud from the Golgi towards the ER
 - COPII coated vesicles bud from the ER

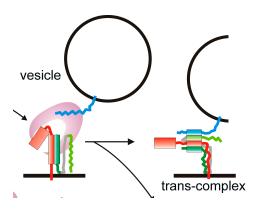

EXAMPLE: Coated vesicle

- □ Clathrin coats drive vesicular _____
 - Adaptor proteins bind the clathrin, and transmembrane proteins that are being transported
 - Cargo receptors are transmembrane proteins that capture soluble cargo
 - Dynamin is a cytoplasmic protein that assembles a ring around the neck and uses GTP to pinch it off


EXAMPLE: Clathrin coated vesicle formation

Clathrin-dependent endocytosis

- □ GTPases regulate recruitment of _____ to the membrane
 - A coat protein binds to a cargo molecule or adaptor which triggers a GDP to GTP transition
 - GTP activated coat protein associates with the membrane and recruits more coat proteins
 - Rab proteins are GTPases that control specificity of coat proteins and specificity of transport
 - GTP form is tightly associated with membranes
 - Each vesicle contains unique combination of Rab proteins


EXAMPLE: Rab proteins in various organelles

SNARE Proteins and Vesicular Fusion

- SNARE proteins are responsible for catalyzing membrane fusion and providing specificity to membrane fusion
 - □ There are two types of SNARES which reside within the _____
 - **T-snare** has 2-3 target snares and resides on the target organelle.
 - V-snare is 1 protein that resides on the vesicle
 - ☐ The two SNARES come together to form a four helix bundle (trans-SNARE complex)
 - Causes fusion of the vesicle to the target membrane
 - □ To unravel the SNAREs energy from ATP is needed
 - NSF (N-ethylmaleimide sensitive factor) releases V and T SNARES using ATP hydrolysis

EXAMPLE: SNARE protein and vesicular fusion

PRACTICE:

- 1. Which of the following is not a protein coat?
 - a. COPI
 - b. COPII
 - c. COPIII
 - d. Clathrin

2.	Which o	of the following coats is used on vesicles that transport molecules from the Golgi to the ER?
		COPI
	b.	COPII
	C.	COPIII
	d.	Clathrin

- 3. Vesicle fusion requires all but which of the following? a. T SNARES

 - b. V SNARES
 - c. Trans SNARE complex
 - d. Rab GTP proteins