Intro to Power Series

◆ A power series is an infinite series that also involves a variable, ____, & can be thought of as an "infinite _____."

▶ Power series have _____ determined by c_n and ____ at x = a.

EXAMPLE

For $c_n = \frac{1}{n!}$, write the first 4 terms of the (A) infinite series & (B) power series centered at a = 2.

Recall	Infinite Series	New Power Series	
$\sum_{n=0}^{\infty}$	$c_n = c_0 + c_1 + c_2 + \cdots$	$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$	
$\sum_{n=0}^{\infty} \frac{1}{n!} =$	$=\frac{1}{!}+\frac{1}{!}+\frac{1}{!}+\frac{1}{!}+\cdots$		
=	: + + + +		

◆ We can determine convergence of, perform operations on, and represent functions with power series.

EXAMPLE Determine where the power series are centered and list the four first terms of the given series.

(A)
$$\sum_{n=0}^{\infty} \frac{(x+1)^n}{(n+1) \cdot 3^n}$$

$$(B) \sum_{n=0}^{\infty} (-1)^n n! \, x^n$$

Radius of Convergence

- A power series only converges for certain values of x which is an interval determined by |x a| < R.
 - ► The radius of convergence ____ tells us how far away from the center ____ that the series converges.

EXAMPLE

Find the radius of convergence for the following series.

$$\sum_{n=0}^{\infty} \frac{n \cdot (x-2)^n}{3^n}$$

HOW TO: Find Radius of Convergence

1) Apply convergence test

Ratio:
$$\lim_{n\to\infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n}\right|<1$$

Root:
$$\lim_{n\to\infty} \sqrt[n]{|c_n(x-a)^n|} < 1$$

Geometric:
$$\sum ar^n$$
; $|r| < 1$

2) Put in |x - a| < R form to find R

R can be:

- ▶ a _____ value
- ► _____ if the limit = _____
- ► _____ if the limit = _____

EXAMPLE

Find the radius of convergence of the series.

(A)

$$\sum_{n=0}^{\infty} \frac{2^n (x-1)^n}{n!}$$

(B)

$$\sum_{n=0}^{\infty} n^n x^n$$

HOW TO: Find Radius of Convergence

1) Apply convergence test

Ratio:
$$\lim_{n\to\infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n}\right|<1$$

Root:
$$\lim_{n\to\infty} \sqrt[n]{|c_n(x-a)^n|} < 1$$

Geometric:
$$\sum ar^n$$
; $|r| < 1$

2) Put in |x - a| < R form to find R R can be:

► a finite value

▶ **0** if the limit = ∞

▶ ∞ if the limit = **0**

(c) $\sum_{\infty}^{\infty} (x)$

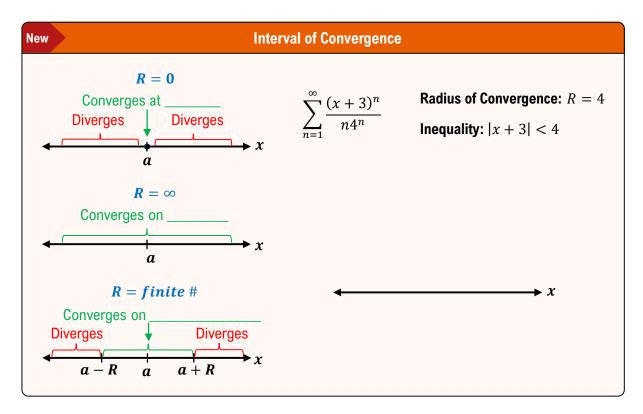
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n4^n}$$

Interval of Convergence

- ullet Recall: Radius of convergence **R** is how far from center **a** that a power series converges.
 - ▶ The *interval* of convergence is found by _____ the inequality |x a| < R.

EXAMPLE

Find the interval of convergence of the power series below given its radius of convergence.



lacktriangle We must also determine convergence of ______ by plugging them in for x into the original power series.

EXAMPLE Determine endpoint convergence for the power series.

$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n4^n}$$

$$x = \underline{\qquad}: \qquad \sum_{n=1}^{\infty} \frac{(-+3)^n}{n4^n}$$

$$x = \underline{\qquad}: \qquad \sum_{n=1}^{\infty} \frac{(-+3)^n}{n4^n}$$

EXAMPLE

Find the interval of convergence of each series.

 $(A) \qquad \sum_{k=0}^{\infty} \frac{k! \, x^{2k}}{3^k}$

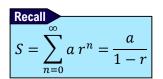
Recall

Ratio: $\lim_{n \to \infty} \left| \frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n} \right| < 1$ Root: $\lim_{n \to \infty} \sqrt[n]{|c_n(x-a)^n|} < 1$ Geometric: $\sum ar^n$; |r| < 1

$$\sum_{n=1}^{\infty} \frac{n!}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} x^n$$

Representing Functions as Power Series

- ◆ Representing complicated functions as power series lets us approximate & manipulate them more easily.
 - ► To do this, we often use the form of a geometric series:



EXAMPLE

Find a power series for the function $f(x) = \frac{1}{x}$ centered at a = 1 and determine the interval of convergence.

HOW TO: Represent f(x) as a Power Series

- **1)** Write f in the form:
- 2) Identify *a* & *r*
- 3) Plug a & r into $\sum_{n=0}^{\infty} a r^n$
- **4)** Find int. of convergence w/ geometric series test: | | < 1

EXAMPLE

Find the power series representation centered at x = 0 of the following function. Give the interval of convergence for the resulting series.

$$f(x) = \frac{2}{2+x}$$

HOW TO: Represent f(x) as a Power Series

- 1) Write f in the form: $\frac{a}{1-r}$
- 2) Identify *a* & *r*
- 3) Plug a & r into $\sum_{n=0}^{\infty} a r^n$
- **4)** Find int. of convergence w/ geometric series test: |r| < 1

PRACTICE

Find the power series representation centered at x = 0 of the following function. Give the interval of convergence for the resulting series.

$$f(x) = \frac{1}{1 - x^3}$$