Divergence Test (nth-Term Test)

lacktriangle The divergence test proves that an infinite series *diverges* by taking the limit of a_n as $n \to \infty$.

CONVERGENCE TESTS				
Name	Series	Converges if	Diverges if	Additional Info
Divergence Test	$\sum_{n=1}^{\infty} a_n$	Does NOT determine convergence	$\begin{aligned} & \text{If } \lim_{n \to \infty} a_n \neq 0 \\ & \text{or } \\ & \lim_{n \to \infty} a_n \ \ DNE \end{aligned}$	If $\lim_{n \to \infty} a_n = 0$, test is inconclusive

EXAMPLE

Use the divergence test to determine if the following series diverge.

$$(A)$$

$$\sum_{n=0}^{\infty} \frac{4^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{3n}{n^2 + 1}$$

$$\sum_{n=1}^{\infty} \frac{2n!}{3n!-4}$$

$$(\mathbf{D}) \qquad \sum_{\infty}^{\infty} (-1)^r$$

PRACTICE

Use the divergence test to determine if the following series diverge or state that the test is inconclusive.

$$(A) \qquad \sum_{n=1}^{\infty} \sin\left(\frac{n\pi}{2}\right)$$

$$\sum_{n=1}^{\infty} \frac{10^n}{n!}$$

(C)
$$\sum_{n=1}^{\infty} \frac{n^2}{n(n^2 - 1000)}$$

Integral Test

◆ The integral test determines convergence of infinite series using _____ integrals.

	CONVERGENCE TESTS					
Name	Series	Converges if	Diverges if	Additional Info		
Integral Test	$\sum_{n=N}^{\infty} a_n$ $a_n = \underline{\hspace{1cm}} \text{ must be:}$	The integral	The integral	Use when a_n can be easily integrated.		

◆ An improper integral converges if the limit exists (a finite number) and diverges if the limit DNE.

EXAMPLE

Use the integral test to determine if the following series converges.

$$\sum_{n=0}^{\infty} e^{-n}$$

f(x) for $x \ge$ ___ is:

Positive

Continuous

Decreasing \Box

PRACTICE

Explain why the integral test does not apply to the series.

(A)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$$

(B)

$$\sum_{n=4}^{\infty} \frac{1}{n + \sin n}$$

(C)

$$\sum_{n=0}^{\infty} \frac{n}{n^2 - 1}$$

PRACTICE

Confirm that the integral test applies and then use the integral test to determine convergence of the series.

(A)

$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$

(B

$$\sum_{n=1}^{\infty} \frac{1}{3n+2}$$

P-Series and Harmonic Series

◆ We can quickly determine convergence by recognizing that a series is a *p*-series or a harmonic series.

CONVERGENCE TESTS					
Name	Series	Converges if	Diverges if	Additional Info	
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p 1	p 1		
Harmonic Series	$\sum_{n=1}^{\infty} \frac{1}{n}$	Does converge		A general harmonic series $\sum_{n=1}^{\infty} \frac{1}{an+b}$ also diverges.	

EXAMPLE

Determine whether the given series are convergent.

(A) $\sum_{i=7/5}^{\infty} \frac{1}{i^{7/5}}$

 $\sum_{n=1}^{\infty} \frac{1}{n-1}$

 $(C) \sum_{n=1}^{\infty} \frac{1}{n^{n}}$

PRACTICE

Determine whether the given series are convergent.

(A)

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^3}}$$

(B

$$\sum_{n=1}^{\infty} \frac{5}{3n-7}$$

(C)

$$\sum_{n=1}^{\infty} \frac{n^e}{n^2}$$

(D)

$$\sum_{n=1}^{\infty} n^{-1} + n^{-3}$$

Direct Comparison Test

- ◆ Direct Comparison Test (DCT) uses convergence of known series b_n to find convergence of series in question a_n .
 - ▶ Use DCT when divergence and integral tests are insufficient & series is not a "special" series.

CONVERGENCE TESTS					
Name	Series	Converges if	Diverges if	Additional Info	
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n \text{and} \sum_{n=1}^{\infty} b_n$ $a_n, b_n > \underline{\qquad}$	If \leq and $\sum b_n$ (larger) converges, $\sum a_n$ (smaller) converges.	If \leq and $\sum b_n$ (smaller) diverges, $\sum a_n$ (larger) diverges.	For b_n , we often use a special series (geometric, p -series, harmonic).	

EXAMPLE

Determine whether the given series are convergent.

(A) $\sum_{n=0}^{\infty} \frac{\ln n}{n}$

$$\sum_{n=1}^{\infty} \frac{5}{n^3 + 4}$$

PRACTICE

Use the Direct Comparison Test to determine whether each series converges.

 $(A) \qquad \sum_{n=1}^{\infty} \frac{3}{\sqrt{n}-2}$

$$(B)$$

$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2} \quad \textit{Hint: Compare to } b_n = \frac{1}{n^2}$$

Limit Comparison Test

- lacktriangle Limit Comparison Test uses the limit of the ratio of given series a_n to chosen series b_n to determine convergence.
 - ► Use Limit Comparison Test if given a more complicated series that can't be *directly* compared to a known series.

CONVERGENCE TESTS					
Name	Series	Converges if	Diverges if	Additional Info	
Limit Comparison Test	$\sum_{n=1}^{\infty} \frac{a_n}{a_n} \text{ and } \sum_{n=1}^{\infty} \frac{b_n}{a_n}$ $a_n, b_n > \underline{\qquad}$ $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = L$	$L = 0$ and $\sum b_n$ converges.	$L = 0 \; OR \; L o \underline{\hspace{1cm}}$ and $\sum b_n$ diverges.	Most useful when b_n isn't clearly: • a series • > a_n or $< a_n$	

EXAMPLE

Determine whether the given series is convergent using the Limit Comparison Test.

$$\sum_{n=1}^{\infty} \frac{n \, 4^n}{5n^3 - 1}$$

PRACTICE

Use the Limit Comparison Test to determine whether each series converges.

(A)

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 3}$$

(B)

$$\sum_{n=1}^{\infty} \frac{n}{(n-1)3^{n+1}}$$

PRACTICE

Use the Limit Comparison Test to determine if the following series converges.

(A)

$$\sum_{n=1}^{\infty} \frac{1}{2n^2 - n\cos(n\pi)}$$

(B

$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n}$$

Alternating Series Test

• An alternating series has terms that alternate in ______ & often contains: $(-1)^n$, $(-1)^{n\pm 1}$, $\cos n\pi$, or $\sin \frac{n\pi}{2}$.

CONVERGENCE TESTS					
Name	Series	Converges if	Diverges if	Additional Info	
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^n a_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$	Two conditions are met: $\lim_{n\to\infty}(a_n)=$ $\bullet \ 0< \le a_n$ for all n (decreasing)	One of the conditions is NOT met	If $\sum a_n$ converges, then it is • Absolutely convergent if $\sum a_n $ verges. • Conditionally convergent if $\sum a_n $ verges.	

EXAMPLE

Determine whether the series converges absolutely, converges conditionally, or diverges.

$$(A) \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n!}{3^n}\right)$$

$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n\sqrt{n}}$$

lacktriangle Absolute convergence ($\sum |a_n|$ converges) implies convergence of $\sum a_n$.

PRACTICE

Use the Alternating Series Test to determine if the following series are conditionally convergent, absolutely convergent, or divergent.

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)}{\ln n}$$

$$\sum_{k=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n^3}$$

(C)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{3}{4n+5} \right)$$

Alternating Series Remainder

- ullet Alternating series remainder measures how accurately the nth partial sum \mathcal{S}_n estimates the actual sum \mathcal{S} .
 - ▶ The error (remainder) R_n is given by _____ and is no greater than the first _____ term a_{n+1} .

Alternating Series Remainder

If the alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ or } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges by the alternating series test, then

$$|R_n| = |S - S_n| \qquad a_{n+1}$$

EXAMPLE

Consider the convergent series: $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{n^3}\right)$

(A) Use the remainder estimate $|R_n| \le a_{n+1}$ to determine a bound on the error R_8 .

(B) Determine how many terms should be used to estimate the entire series with an error less than 10^{-3} .

PRACTICE

Use the Alternating Series Test to (A) determine the convergence or divergence of the series and (B) approximate the sum of the series using the first five terms.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n} + 2}$$

Ratio Test

- lacktriangle The Ratio Test uses the limit of the ratio of a_{n+1} and a_n to determine convergence.
 - ► Ratio Test is often used for series that contain factorials, exponentials, and/or powers.

CONVERGENCE TESTS					
Name	Series	Converges if	Diverges if	Additional Info	
Ratio Test	$\sum_{n=1}^{\infty} a_n$ Let $\lim_{n \to \infty} \left \right = r$	r 1	r1	Inconclusive if r 1, use another convergence test	

EXAMPLE

Determine whether the given series is convergent using the Ratio Test.

$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$

EXAMPLE

Determine whether the given series are convergent using the Ratio Test.

(A)

$$\sum_{k=1}^{\infty} \frac{2^k}{(k+1)!}$$

(B)

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+2}$$

PRACTICE

Determine whether the given series are convergent using the Ratio Test.

(A)

$$\sum_{n=1}^{\infty} \frac{8^n}{(2n)!}$$

(D

$$\sum_{n=1}^{\infty} \frac{n^5}{(6)^n}$$

(C)

$$\sum_{n=1}^{\infty} \frac{n!}{3^n}$$

Root Test

- lacktriangle The Root Test uses the limit of the $n{
 m th}$ root of the series to determine convergence.
 - lacktriangle Root Test is often used when a_n is raised to the nth power.

CONVERGENCE TESTS				
Name	Series	Converges if	Diverges if	Additional Info
Root Test	$\sum_{n=1}^{\infty} (a_n)^n$ Let $\lim_{n \to \infty} (a_n)^n = r$	r 1	r 1	Inconclusive if r 1, use another convergence test

EXAMPLE

Determine whether the given series are convergent using the root test.

(A)
$$\sum_{n=1}^{\infty} \frac{n^n}{(\ln(n+1))^n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(2n^3 - 3)^n}{(4n^3 + n)^n}$$

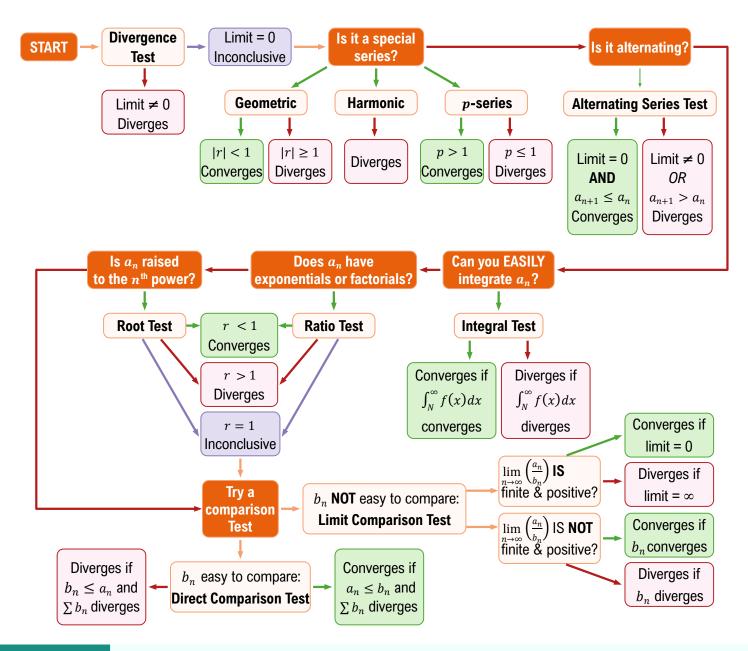
PRACTICE

Determine if the following series converges, diverges, or is inconclusive.

(A)
$$\sum_{n=1}^{\infty} \left(\frac{4n+1}{n-2}\right)^n$$

(B)
$$\sum_{n=1}^{\infty} \left(\frac{2n^2 - 1}{n^2 + 5} \right)^{-n}$$

Choosing a Convergence Test



EXAMPLE Choose a converge

Choose a convergence test for each of the following series.

(A)
$$\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^4}$$
 (B)
$$\sum_{n=1}^{\infty} \frac{5}{n^4 + 2n^2 - 24}$$

PRACTICE

Determine the convergence or divergence of the series.

(A)

$$\sum_{k=1}^{\infty} \frac{(-1)^k 4}{3k+2}$$

(E

$$\sum_{n=1}^{\infty} \frac{5^{n-1}}{2^n}$$

(C)

$$\sum_{n=1}^{\infty} \frac{n \cdot 8^n}{(n+1)!}$$

(D)

$$\sum_{k=1}^{\infty} \frac{7k^2}{5k+3}$$