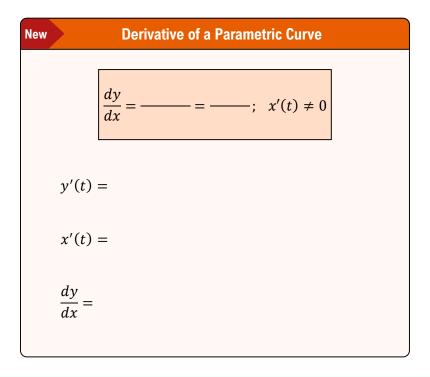
Differentiation of Parametric Curves

- ullet Recall: Parametric equations express x and y as functions of the parameter t.
 - ► The *derivative* of a parametric equation is found by ______ the *derivatives* of y & x with respect to ____.

EXAMPLE

Find the derivative of the curve defined by the equations $x(t) = t^2 + 3t \& y(t) = 2t^3 - 4$.



EXAMPLE

Find the equation of the tangent line to the curve defined by the equations $x(t) = t^2 + 3t$ & $y(t) = 2t^3 - 4$ when t = 1.

$$x_1 = x() =$$

$$y_1 = y() =$$

$$m = \frac{dy}{dx}\Big|_{t=} =$$

Tangent line:

Recall
$$y - y_1 = m(x - x_1)$$
 (Point-Slope)

EXAMPLE

Find $\frac{dy}{dx}$ for the parametric curve given by $x(t) = 3\cos(t)$ and $y(t) = 3\sin(t)$.

PRACTICE

Write the equation of the tangent line in cartesian coordinates for the given parameter t.

$$x = 8\cos t$$
, $y = 6\sin t$, $t = \frac{\pi}{4}$

EXAMPLE

Find all the points on the curve $x(t) = t - \frac{1}{t}$, $y(t) = t + \frac{1}{t}$ that have a slope of 0.

<u>Higher-Order Derivatives of Parametric Curves</u>

ullet To find the 2nd deriv. of a parametric equation, differentiate the 1st deriv. w/ respect to t and divide by _____.

EXAMPLE

Find (A) the first derivative and (B) the second derivative of the equations defined by $x(t) = t^2 + 3t$ and $y(t) = 2t^3 - 4$.

Recall	1st Deriv. of Parametric Eqns	New	2 nd Derivative of Parametric Equations
	$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)}$		$\frac{d^2y}{dx^2} = \frac{d/dt\left(\right)}{}$
	$y'(t) = 6t^2$	d/dt ($dt (g) g^2$
	x'(t) = 2t + 3		(Quotient Rule)
	$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{6t^2}{2t+3}$	$\frac{dx}{dt} =$	
		$\frac{d^2y}{dx^2} =$	

lacktriangle To find any higher-order derivative, differentiate the ______ derivative with respect to t and divide by ____.

EXAMPLE

Determine the concavity of the curve x = t, $y = t^3 - 3t$. Recall: A function is concave up if its 2^{nd} derivative is positive and concave down if its 2^{nd} derivative is negative.

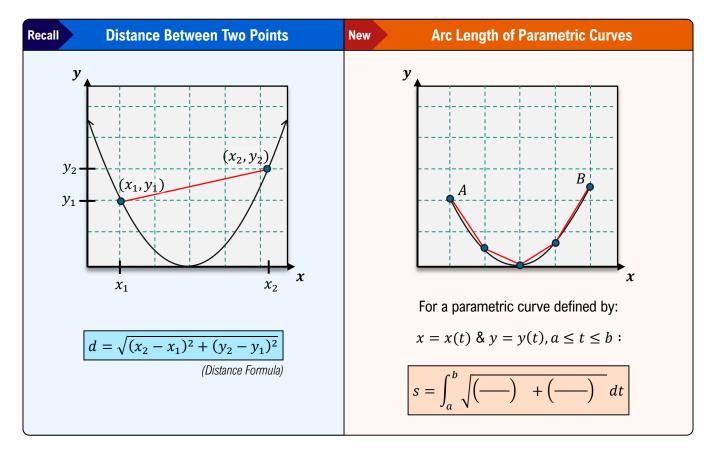
PRACTICE

Find $\frac{d^3y}{dx^3}$ for the parametric curve at the given point.

$$x = 2t^3$$
, $y = t^4$, $t = 1$

Arc Length of Parametric Curves

- ◆ The distance traveled along a curve between two points is called the *arc length*.
 - ► Arc length *s* is the sum of distances of _____ many line segments between two points on a curve.



EXAMPLE

Find the arc length of the curve defined by the equations $x(t) = 2\cos t$ and $y(t) = 2\sin t$ on the interval $[0, \pi]$.

$$\frac{dx}{dt} =$$

$$\frac{dy}{dt} =$$

$$\int \sqrt{() + ()} dt =$$

EXAMPLE

Find the arc length of the parametric curve defined by the equations below, from t = 0 to t = 1.

$$x(t) = t^3, y(t) = 2t^2$$

PRACTICE

Find the length of the curve below on the interval [0,4].

$$x = \frac{1}{3}(2t+3)^{\frac{3}{2}}, y = \frac{1}{2}t^2 + t$$