Differentiation of Polar Curves

- lacktriangle Polar curves r = can be written in parametric form x = & y =
 - ▶ Polar cuves can be *differentiated* by converting to parametric form and using the chain rule.

EXAMPLE

Find the slope of the tangent line of the polar curve $r=2\sin\theta$ at $\theta=\pi/6$.

New **Slope of Polar Curves Convert to parametric form:** y =x =Differentiate the parametric equations: Plug in $\theta = :$

EXAMPLE

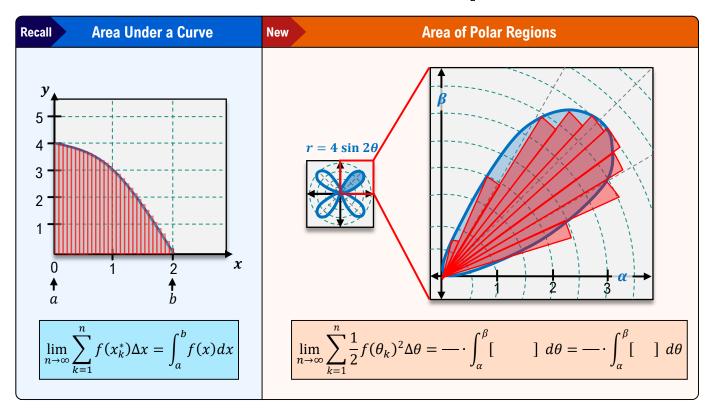
Find the derivative $\frac{dy}{dx}$ for the polar curve $r=2\cdot\sin{(\theta)}$.

PRACTICE

Find the slope of the tangent line to the polar curve $r=2\cos{(\theta)}$ at $\theta=\frac{\pi}{3}$.

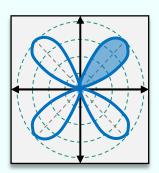
Area of Polar Regions

- ullet Recall: The area under a curve f(x) is the sum of the area of infinite *rectangles*, found using a definite integral.
 - ► The area of a polar region $r = f(\theta)$ is the sum of infinite sector areas $A = \frac{1}{2}r^2\theta$, also found using a def int.



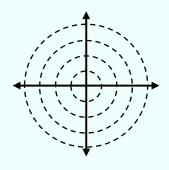
EXAMPLE

Find the area of one petal of the rose defined by $r = 4 \sin 2\theta$.



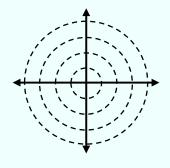
EXAMPLE

Find the area enclosed by the inner loop of the limaçon given by $r=1-2\cos\theta$.



EXAMPLE

Find the area enclosed by one loop of the lemniscate given by $r^2 = 4 \sin 2\theta$.



PRACTICE

Find the area enclosed by the cardioid $r=2-2\sin\theta$ between $\theta=\frac{\pi}{6}$ and $\theta=\frac{2\pi}{3}$.

