

TOPIC: F-DISTRIBUTION AND TWO VARIANCES

F-Distribution

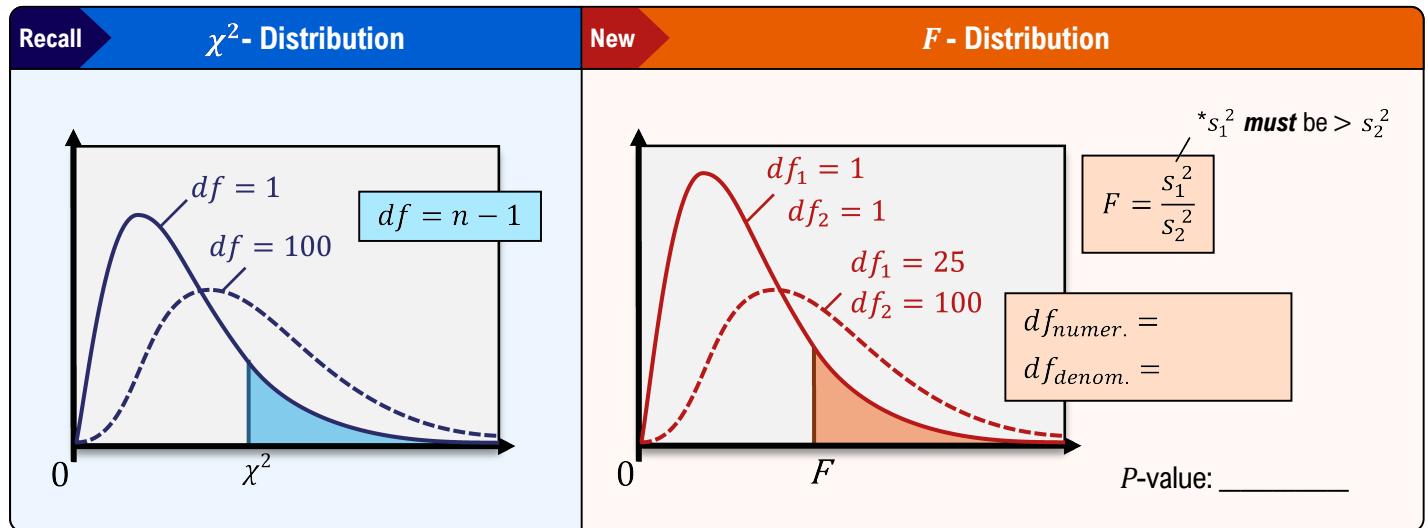
◆ The F -dist is asymmetric like χ^2 , but has ___ degrees of freedom, because it's used to analyze 2 sets of data.

► To find P -values for the F -dist on a TI-84, 2^{nd} → **VARS** (**distr**) & use the **0:Fcdf ()** function.

► For **lower**, use given F statistic. For **upper**, use 1E99

EXAMPLE

Find the P -value for a hypothesis test with $F = 1.5$, $n_1 = 11$, $n_2 = 12$



TOPIC: F-DISTRIBUTION AND TWO VARIANCES

PRACTICE

Which statement about the *F*-distribution is *always* true?

- A)** It is symmetric like the normal distribution.
- B)** It is centered at 0.
- C)** It is always right-skewed and takes only positive values.
- D)** It becomes negative when the denominator variance is very small.

PRACTICE

Two machines produce metal rods. You take independent random samples of their lengths (shown below) as part of a hypothesis test. Calculate the *F* statistic for this test.

Sample A: $s^2 = 2.1$, $n = 10$

Sample B: $s^2 = 4.2$, $n = 12$

EXAMPLE

In a two-sample hypothesis test comparing the variances of two suppliers' shipments by weight, you obtain the following data about the two independent, random samples $s_A^2 = 16$, $s_B^2 = 9$, $n_A = 12$, $n_B = 8$. Using a graphing calculator, find the *P*-value for the *F*-statistic.

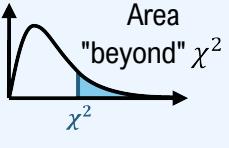
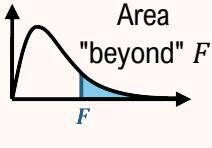
TOPIC: F-DISTRIBUTION AND TWO VARIANCES

Performing Hypothesis Tests for Two Variances

- Like proportions and means, we can use the same steps to perform a hypothesis test for 2 variances or std. devs.
- First, determine which sample to label s_1^2 and n_1 .

EXAMPLE

A manufacturer wants to know if Supplier A has greater variance in resistor values than Supplier B. They collect independent normal samples from each & find $n = 22, s^2 = 0.017, n = 20, s^2 = 0.009$ from Supplies A & B, respectively. Use $\alpha = 0.05$ to test this claim.

Recall	1 Variance	New	Hypothesis Tests for 2 Variances
1) Hyp	$H_0: \sigma^2 = \#$ $H_a: \sigma^2 < > \neq \#$		$H_0: \sigma_A^2 = \underline{\hspace{10cm}}$ $H_a: \sigma_A^2 [< > \neq] \underline{\hspace{10cm}}$
2) Test Stat	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$	$*s_1^2 > s_2^2$ $F = \frac{s_1^2}{s_2^2}$	$s_1^2 = \underline{\hspace{10cm}}$ $s_2^2 = \underline{\hspace{10cm}}$ $F = \underline{\hspace{10cm}}$ (always > 1)
3) P-Value			$n_1 = \underline{\hspace{10cm}}$ $df_1 = n_1 - 1 = \underline{\hspace{10cm}}$ $n_2 = \underline{\hspace{10cm}}$ $df_2 = n_2 - 1 = \underline{\hspace{10cm}}$ $P\text{-value: } \underline{\hspace{10cm}}$
4) Conclusion	Because $P\text{-val...}$		Because $P\text{-value } [< >] \alpha$, we [REJECT FAIL TO REJECT] H_0 . There is [ENOUGH NOT ENOUGH] evidence to suggest...
Criteria	Random sample? <input type="checkbox"/> Data is normal? <input type="checkbox"/>	For EACH sample:	Random sample? <input type="checkbox"/> Data is normal? <input type="checkbox"/>

TOPIC: F-DISTRIBUTION AND TWO VARIANCES

PRACTICE

In a two-sample Hypothesis Test for Variance, what does an F -statistic near 1 indicate?

- A)** Both populations have zero variance.
- B)** We reject the null hypothesis H_0 .
- C)** The numerator variance is smaller than the denominator variance.
- D)** The two sample variances are approximately equal.

EXAMPLE

A bakery wants more consistent cookies, so they test the weights (in grams) of cookies made in two different ovens. Oven A produced 16 cookies with a standard deviation of 2.45, Oven B produced 11 cookies with a standard deviation of 1.26. Use $\alpha = 0.05$ to test the claim that the variation in cookie weights from Oven A is different than Oven B.

H_0 : _____ H_a : _____

$s_1 =$ _____ $n_1 =$ _____ $df_1 = n_1 - 1 =$ _____

$s_2 =$ _____ $n_2 =$ _____ $df_2 = n_2 - 1 =$ _____

F -statistic: _____

P -value: _____

Because P -value [$< | >$] α , we [**REJECT** | **FAIL TO REJECT**] H_0 ,
there is [**ENOUGH** | **NOT ENOUGH**] evidence to suggest...