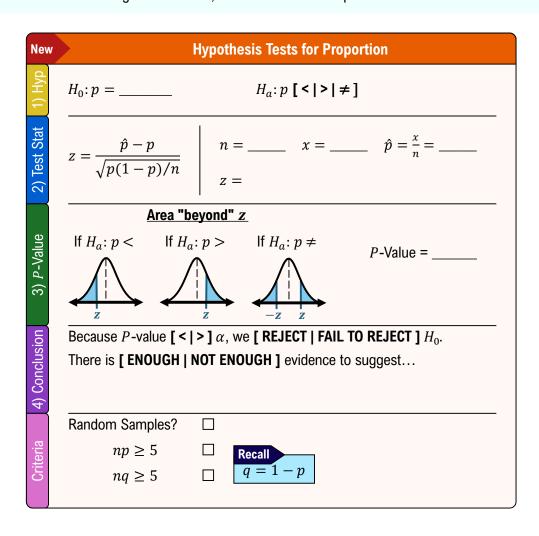
Performing a Hypothesis Test for Population Proportion

◆ Recall: To run a hypothesis test 1) Write Hypotheses, 2) Calc. Test Statistic, 3) Find *P*-Value, & 4) State Conclusion.

EXAMPLE

A tech company says 90% of its devices pass inspection. A quality inspector thinks it's less, so they test 200 devices, 172 of which passed. At the 0.01 significance level, is there evidence the pass rate is below 90%?



EXAMPLE

Perform each hypothesis test using n = 20, x = 14, a claim of p = 0.5 & $\alpha = 0.05$.

(A) One tail - Left

Random Samples?

 $np \geq 5$ $nq \geq 5$

$$\Box$$
 H_0 :

 \Box z =

$$H_a$$
:

$$\Box \qquad H_0: \qquad \qquad H_a:$$

$$\Box \qquad n = \underline{\qquad} \qquad x = \underline{\qquad} \qquad \hat{p} = \underline{\qquad}$$

Recall

Because P-value = $\underline{\hspace{1cm}}$ [< | >] α = $\underline{\hspace{1cm}}$, we [**REJECT** | **FAIL TO REJECT**] H_0 .

There is **[ENOUGH | NOT ENOUGH]** evidence to suggest H_a : p [<|>| \neq] 0.5

(B) One tail - Right

Random Samples?

$$\Box$$
 H_0 :

$$H_{\alpha}$$
:

$$\Box \qquad H_0: \qquad \qquad H_a:$$

$$\Box \qquad n = \underline{\qquad} \qquad x = \underline{\qquad} \qquad \hat{p} = \underline{\qquad}$$

 $np \ge 5$ $nq \ge 5$ \square z =

 $np \geq 5$ $nq \geq 5$

$$\Box$$
 $z =$

Because
$$P$$
-value = ___ [< | >] α = ____ , we [REJECT | FAIL TO REJECT] H_0 .

There is [ENOUGH | NOT ENOUGH] evidence to suggest H_a : p [<|>| \neq] 0.5

(C) Two tail

Random Samples?

$$\sqcup$$
 H_0

$$H_{\alpha}$$
:

$$\Box H_0: H_a:
\Box n = \underline{\qquad} x = \underline{\qquad} \hat{p} = \underline{\qquad}
\Box z =$$

$$\hat{p} = \underline{\hspace{1cm}}$$

Because P-value = $\underline{\hspace{1cm}}$ [< | >] α = $\underline{\hspace{1cm}}$, we [REJECT | FAIL TO REJECT] H_0 .

There is [ENOUGH | NOT ENOUGH] evidence to suggest H_a : p [< | > | \neq] 0.5

PRACTICE

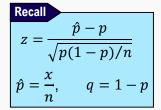
Perform a 2-tailed hypothesis test for the true proportion of successes using the given values:

(A)
$$\alpha = 0.01$$
, $n = 40$, $x = 28$, & claim is $p = 0.75$

Random Samples? \square H_0 : H_a :

 $np \ge 5$ \Box $\hat{p} = \underline{\qquad}$ z =

 $nq \geq 5$



Because P-value = ___ [< | >] α = ____ , we [REJECT | FAIL TO REJECT] H_0 .

There is **[ENOUGH | NOT ENOUGH]** evidence to suggest H_a : p [<|>| \neq] 0.75

(**B**)
$$\alpha = 0.10$$
, $n = 100$, $x = 42$, & claim is $p = 0.25$

Random Samples? \Box H_0 : H_a :

 $np \ge 5$ \square $\hat{p} = \underline{\hspace{1cm}}$ z =

 $nq \geq 5$

Because *P*-value = $\underline{\hspace{1cm}}$ [< | >] α = $\underline{\hspace{1cm}}$, we [**REJECT** | **FAIL TO REJECT**] H_0 .

There is **[ENOUGH | NOT ENOUGH]** evidence to suggest H_a : p [< | > | \neq] 0.25

EXAMPLE

A company claims that 20% of its products are defective. A random sample of 150 products is tested, & 35 are found defective. At $\alpha = 0.05$, test whether the defect rate is different from 20%. Based on your results, should the company investigate its production process?

Random Samples? \square H_0 : H_a : $np \geq 5 \qquad \square \qquad n = \underline{\qquad} \qquad x = \underline{\qquad} \qquad \hat{p} = \underline{\qquad}$ $nq \geq 5 \qquad \square \qquad z = \underline{\qquad}$

Recall $z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$ $\hat{p} = \frac{x}{n}, \qquad q = 1 - p$

Because P-value = ___ [< | >] α = ____ , we [REJECT | FAIL TO REJECT] H_0 . There is [ENOUGH | NOT ENOUGH] evidence to suggest...

PRACTICE

A snack company claims that at least 70% of people prefer its new low-sugar granola bar over the original version. To test this claim, a grocery chain surveys a random sample of 80 customers, & 50 say they prefer the new version. Use $\alpha=0.10$ to test whether more than 70% of customers prefer the new granola bar. Should the grocery chain stock more of the new product & reduce shelf space for the original version?

	Mean		Proportion	Variance
Step 1)	H_0 : $\mu = $		H_0 : $p = $	H_0 : $\sigma^2 = $
Hypotheses	H_a : μ [< > \neq]		$H_a: p[< > \neq]$	$H_a: \sigma^2 [< > \neq]$
Step 2) Calc. Test Statistic	(σ Known): $z = \frac{x - \mu}{\sigma / \sqrt{n}}$	$(\sigma \ Unknown):$ $t = \frac{x - \mu}{s / \sqrt{n}}$	$z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}$	$\mathcal{X}^2 = \frac{(n-1)s^2}{\sigma^2}$
Step 3)		$P(T_{n-1} [< >] t) OR$	P(Z[< >]z) OR	$P(X_{n-1}^2 [< >] X^2)$ OR
P-Value	$2 \cdot P(Z [< >] z)$	$2 \cdot P(T_{n-1} [< >] t)$	$2 \cdot P(Z [< >] z)$	$2 \cdot P(X_{n-1}^2 [< >] X^2)$
Step 4) State	Because P -value [< >] α , we [REJECT FAIL TO REJECT] H_0 .			
Conclusion	There is [ENOUGH NOT ENOUGH] evidence to $\{$ restate H_a $\}$			