

TOPIC: CONFIDENCE INTERVALS & HYPOTHESIS TESTING

Confidence Intervals & Hypothesis Testing

- ◆ You can use a **confidence interval** to reach the same conclusion as a 2-tail **hypothesis test**:

- If the claimed value _____ in the confidence int., then the corresponding test stat. _____ in the **rejection region**.

EXAMPLE

Use $\bar{x} = 10$, $\sigma = 2$, & $n = 36$ for the following.

Confidence Interval	Hypothesis Test
<p>(A) Create a 95% confidence interval for μ.</p> <p>Critical Value: $\alpha = \underline{\hspace{2cm}}$ $z_{\alpha/2} = \underline{\hspace{2cm}}$</p> <p>Point Estimate: $\bar{x} = \underline{\hspace{2cm}}$</p> <p>Margin of Error: $\sigma = \underline{\hspace{2cm}}$ $n = \underline{\hspace{2cm}}$</p> $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} =$ <p>Because 11 is [OUT IN]-side interval, we [REJECT FTR] the claim that $\mu = 11$.</p>	<p>(B) Use $\alpha = 5\%$ to test $H_0: \mu = 11$ vs $H_a: \mu \neq 11$.</p> <p>Critical Value: $\alpha = 0.05$ $z_{\alpha/2} = 1.96$</p> <p>Test Statistic: $\bar{x} = 10$ $\sigma = 2$ $n = 36$</p> $z = \frac{(\bar{x} - \mu)}{\sigma/\sqrt{n}} =$ <p>Because test stat. is [IN OUT]-side rejection region, we [REJECT FTR] the claim that $\mu = 11$.</p>
<p>There is [ENOUGH NOT ENOUGH] evidence to suggest...</p>	

- ◆ Note: These methods are equivalent for μ & σ , but not always for p .

PRACTICE

A teacher claims her students' average test score is 75. A researcher suspects it's different. A sample of 25 students has a mean score of 78 with a standard deviation of 6.

(A) Create a 90% confidence interval for the mean test score.

(B) At the 0.01 significance level, test the claim.