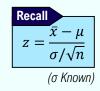

Standard Deviation (σ) Known

- ◆ Recall: To run a hypothesis test 1) Write Hypotheses, 2) Calc. Test Statistic, 3) Find *P*-Value, & 4) State Conclusion.
 - ▶ In Step 2, when σ is **known**, we use the ____ test statistic.

EXAMPLE

A lighting company advertises their LED bulbs to last on average 25,000 hr. Past data shows the bulbs' lifespans have a normal dist. with σ = 1,200 hr. A separate agency suspects the lifespan is actually lower. From a random sample of 36 bulbs, they find \bar{x} = 24,600 hr. Use α = 0.10 to test the claim that the true mean lifespan is 25,000 hr.



EXAMPLE

Perform the hypothesis test using $\sigma=6$, n=36, and $\alpha=0.10$. Test the claim that $\mu=50$ using...

(A) Left-Tailed Test: $\bar{x} = 47$

(**B**) Right-Tailed Test: $\bar{x} = 51$

PRACTICE

Test the claim about the population mean μ at the given level of significance. Assume the population is normally distributed. Find the P-value and determine whether you should reject or fail to reject the null hypothesis.

Claim: $\mu \neq 1020$, $\alpha = 0.01$, $\sigma = 85$

Sample: $\bar{x} = 990, \ n = 40$

EXAMPLE

A company has historically priced one of its best-selling products at \$48.00. A manager suspects that the average price of this product across retail outlets has changed. A random sample of 32 stores showed an average selling price of \$46.90. The population standard deviation is known to be \$3.50. At the α = 0.05 significance level, test the claim that the average price is different from \$48.00.

EXAMPLE

City officials claim that the average annual salary of all full-time workers in a particular city is \$51,000. A local labor expert believes that the average salary has increased since then. A random sample of 18 full-time workers is taken and the results are shown below. The population is approximately normal with a known standard deviation of \$4,500. Test this claim using a significance level of $\alpha = 0.05$.

 48,000
 52,100
 50,500
 53,000
 54,200
 51,300
 55,000
 52,700
 50,900

 51,800
 53,100
 49,500
 52,300
 51,100
 50,700
 53,200
 54,000
 52,400

Standard Deviation (σ) Unknown

ullet To run a hypothesis test when σ is **unknown**, use ___ instead of ___ & the **t** distribution instead of normal.

EXAMPLE

A tech company claims that the average battery life of their new smartphone model is 12 hr, but you suspect it might actually be less. Test this claim given a sample of 40 phones with mean battery life of 11.4 hr, standard deviation of 1.2 hr & significance level of 0.05.

Reca	σ Known	New Hypothesis Tests for Mean (σ Unknown)
1) Hyp	$H_0: \mu = \#$ $H_a: \mu < > \neq \#$	$H_0: \mu = $ $H_a: \mu [< > \neq]$
2) Test Stat	$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} \qquad \qquad \bar{x} = \underline{\qquad} \qquad s = \underline{\qquad} \qquad n = \underline{\qquad}$ $t = \underline{\qquad}$
3) P -Value		Area "beyond" t $df = n - 1 = \underline{\qquad}$ $P\text{-Value} = \underline{\qquad}$
4) Conclusion	Because P-value	Because P -value [< >] α , we [REJECT FAIL TO REJECT] H_0 . There is [ENOUGH NOT ENOUGH] evidence to suggest
Criteria	Random samples? X is normal $OR \ n > 30$?	Random samples? X is normal \square OR $n > 30$?

PRACTICE

Test the claim about the population mean μ at the given level of significance. Assume the population is normally distributed. Find the P-value and determine whether you should reject or fail to reject the null hypothesis.

Claim: $\mu > 52$, $\alpha = 0.10$

Sample: $\bar{x} = 53.1$, s = 4.7, n = 20

EXAMPLE

A city government claims that the average monthly rent for a one-bedroom apartment in the downtown area is \$1,450. A housing advocacy group believes that figure may be outdated and has changed recently. They collect a random sample of 18 apartments finding a sample mean of \$1,525 and sample standard deviation of \$135. Test the claim using $\alpha = 0.05$.