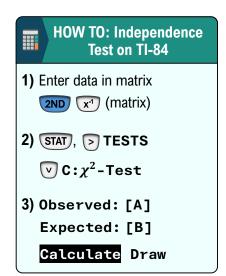
TOPIC: INDEPENDENCE TEST USING A TI-84

Independence Test Using a TI-84

ullet To run an independence test using a TI-84, enter data in a ______, then use the $C: \chi^2$ -Test function.


EXAMPLE

A research hospital runs a trial with the following results. Determine if the group a participant was in is independent from their symptoms improving. Let $\alpha=0.05$.

	Group A	Group B	Placebo
Yes	44	38	13
No	26	32	57

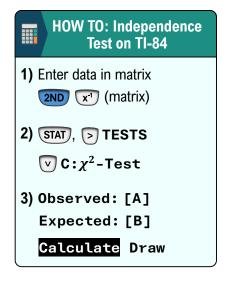
 H_0 : H_a :

Because P-value = ____ [< | >] α , we [REJECT | FAIL TO REJECT] H_0 . There is [ENOUGH | NOT ENOUGH] evidence to conclude that whether a participant's symptoms improved is dependent on the group the participant was in.

PRACTICE

A student performs a Goodness of Fit Test using technology to see if pet ownership is independent of relationship status. They get the following results: $\chi^2 = 0.545 \& p = 0.7614$. What can they conclude about pet ownership and relationship status?

TOPIC: INDEPENDENCE TEST USING A TI-84


EXAMPLE

A restaurant claims that customer satisfaction rating (out of 5) is independent of which of their three locations the patron dined at, so they collect data from a random sample of diners shown below. Perform an independence test for the claim with $\alpha=0.05$.

	5	4	3	2	1
Location X	26	45	31	13	6
Location Y	31	56	29	12	9
Location Z	56	99	60	25	16

 H_0 : H_a :

Because P-value [< | >] α , we [REJECT | FAIL TO REJECT] H_0 . There is [ENOUGH | NOT ENOUGH] evidence to conclude that a student's final grade is dependent on the instruction delivery method of the class.

EXAMPLE

A math textbook company claims that the proportion of books sold for each subject is the same across book type sold. They collected data on a random sample of book purchases. Perform a homogeneity test for the claim with $\alpha = 0.05$.

	STATS	CALC	ALG	Other
Hardcover	27	48	29	11
Softcover	30	57	26	14
Digital	98	67	49	2

 H_0 :

 H_a :

Because P-value [< | >] α , we [**REJECT** | **FAIL TO REJECT**] H_0 . There is [**ENOUGH** | **NOT ENOUGH**] evidence to conclude that the proportion of books sold for each subject is not the same across book type.