TOPIC: PHYLOGENETICS AND GENOME EVOLUTION

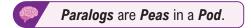
Homologs: Orthologs & Paralogs

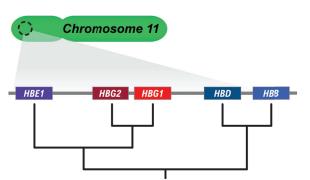
\	Homologs:	genes that	are descende	ed from the same	gene.

Orthologs: homologous genes in related ______.

- Arise through .

- E.g., Human and _____ β-hemoglobin.




► Paralogs: homologous genes in the _____ genome.

- Arise through gene _____.

- Gene _____: group of paralogs in a genome.

- E.g., The 5 _____ in β-hemoglobin gene family.

PRACTICE

Which of the following statements about homologs are true?

- I) Phylogenetic trees of different taxa can be made using orthologs but not paralogs.
- II) A gene family is a group of paralogs within a genome.
- III) Orthologs are homologs that are found in different species.
- a) | & ||.

b) 1 & III.

c) II & III.

d) I, II, & III.

TOPIC: PHYLOGENETICS AND GENOME EVOLUTION

PRACTICE

The different genes that code for the photoreceptive proteins that function in the vertebrate eye are all believed to be paralogs. Which statement below is most consistent with this idea?

- a) The ability to detect light evolved repeatedly in different vertebrate lineages.
- b) Different photoreceptor genes are found in different species of vertebrates.
- c) Gene duplication events in photoreceptor genes have occurred whenever there has been a speciation event.
- d) The genes that code different photoreceptors all arose through gene duplication events.

TOPIC: PHYLOGENETICS AND GENOME EVOLUTION

The Molecular Clock

- ◆ Number of mutations between _____ can estimate a date of divergence.
 - Why it works: ______ tend to enter populations at a relatively _____ rate.
 Especially true for _____ mutations.

 Time
- Calculating mutation rate: Compare DNA sequences of related species with known dates from the ______ record.

 Mutations

 Mutations

- Molecular clocks are only estimates:
 - Mutation rates can _____ in different lineages.
 - ► Can't calibrate beyond the time of good _____ record.
 - selection can influence the clock.

PRACTICE

What is one challenge to trying to date a speciation event using a molecular clock?

- a) If natural selection acts on a sequence, it can affect the rate that new mutations become fixed in a population.
- b) Because mutations are random, in some lineages, mutations do not occur.
- c) New mutations are more likely to occur in non-neutral genes.
- d) Molecular clocks can only be calibrated if the gene used has a known effect on fossils.