TOPIC: PUTTING IT ALL TOGETHER

Putting it All Together

◆ Hardy-Weinberg principle says that the genotype frequency of a population will equal:

Genotype Frequencies: AA =	Where $p = \text{freq. of } A \text{ allele.}$	
Aa =	q = freq. of a allele.	
aa =	p + q = 1	100
Hardy-Weinberg equation:+= 1		

◆ Reasons a population may not be in HW equilibrium: MATING MUTANTS? It's NATURAL IN FLOWERS!

Process	Occurs when	Genetic Variation	Special Types
Non- Random Mating	Certain genotypes likely to mate with each other. Affects freq. but not freq.		Inbreeding—creates excessive
Mutations	New alleles are created by changes in DNA.		Point Mutations: change to single nucleotide. Duplications: can create new genes. Horizontal Gene Transfer: introduce genes from different species.
Natural Selection	Certain alleles become more common because they increase the likelihood of survival and		Directional—selects end of distribution. Stabilizing—selects of distribution. (_) Disruptive—selects ends of distribution. (_) Balancing—maintains alleles. Frequency dependent & Heterozygote advantage. Sexual—selects ability to mates. Intersexual & Intrasexual selection.
Genetic Drift	Allele frequencies change due to chance in non-infinite populations.		Founder Effect—new populations only contain alleles present in Population Bottleneck—sudden drop in population size increases of genetic drift.
Gene Flow	move between populations.		

TOPIC: PUTTING IT ALL TOGETHER

PRACTICE

Which of the following statements about the assumptions of the Hardy-Weinberg equilibrium are true?

- I) Non-random mating will not cause a change in allele frequency on its own.
- II) Infinite population size counteracts the effects of natural selection.
- III) Both deleterious and beneficial mutations will affect the Hardy-Weinberg equilibrium.
- a) I & II only.
- b) I & III only.
- c) II & III only.
- d) I, II, & III.

PRACTICE

Which mechanisms most reliably increase genetic variation?

- a) Natural selection & random mating.
- c) Gene flow & mutation.

b) Genetic drift & mutation.

d) Random mating & genetic drift.

PRACTICE

Imagine that you are a researcher studying the beaks of Galapagos finches, and you measure a sudden shift in beak size in the population over a short time period. What additional information below would best indicate that the change was due to Natural Selection and not genetic drift?

- a) There was a loss of genetic variation over the same time period.
- b) There was a large reduction in population size, with only a few individuals surviving to create the new breeding population.
- c) Allele frequency changed in the population along with the phenotypic change of beak size.
- d) The shift coincided with an environmental change that had coincided with similar previous shifts in phenotype in the past.