
TOPIC: ASSUMPTIONS OF THE HARDY-WEINBERG EQUILIBRIUM

Five Assumptions of Hardy-Weinberg Equilibrium

- ◆ Recall: for HW equilibrium, there must be _____ mating and ___ evolution.
 - HW equilibrium makes __ assumptions.

	_ Does
Random Mating: non-random mating will affect frequencies.	affect allele
	frequency.
No Mutation: mutation introduces alleles into a population.	
No Natural Selection: NS specific alleles from the population.	Affect
	}
Infinite (Large) Population Size: allele frequency changes by chance in populations.	frequency.
No Gene Flow: gene flow alleles into or out of a population.	

EXAMPLE

The three graphs below show the change in allele frequencies for a specific allele in different populations over time. In each population, one of the assumptions of the Hardy-Weinberg equilibrium is being broken. First, draw a line matching each graph to the situation that describes it. Then, based on the situation, determine which assumption is being broken.

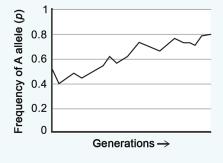
Population of 5000 individuals.

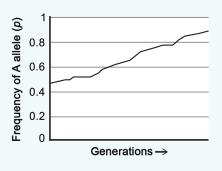
In every generation the AA

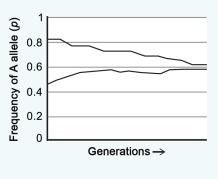
$$p = 0.5$$

homozygotes average 5% more offspring than any other genotype.

Two populations of equal size.


$$p = 0.8 \& p = 0.5$$


In every generation, small groups of individuals move between the two populations.


Population of 100 individuals.

$$p = 0.5$$

There is no selection on the A allele.

TOPIC: ASSUMPTIONS OF THE HARDY-WEINBERG EQUILIBRIUM

PRACTICE

When broken, which assumption of the Hardy-Weinberg equilibrium does not cause evolution on its own?

a) Random mating.

c) No gene flow.

b) Infinite population size.

d) No natural selection.

PRACTICE

Imagine that you are a researcher modeling evolutionary processes in a lab using a population of fruit flies. Which of the following Hardy-Weinberg conditions would be easiest to be sure that you are meeting in the lab?

a) No natural selection.

c) Infinite population size.

b) No mutations.

d) No gene flow.