

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

Multiplying Complex Numbers

- ◆ Complex numbers are multiplied just like algebraic expressions! We A) _____ or B) _____
- Multiplying will *ALWAYS* produce an i^2 term that will get simplified.

EXAMPLE: Find the product. Write answers in standard form.

$$(A) \quad 3i(7 - 2i)$$

$$(B) \quad (-6 + 2i)(3 + 4i)$$

MULTIPLYING COMPLEX NUMBERS

- 1) Distribute or FOIL
- 2) Apply $i^2 = -1$
- 3) Combine Like Terms

PRACTICE

Perform the indicated operation. Express your answer in standard form.

$$(3 + 8i)^2$$

PRACTICE

Find the product. Express your answer in standard form.

$$2i(9 - 4i)(6 + 5i)$$

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

PRACTICE

Multiply the following and simplify.

(A) $(5 - i)(12)$

(B) $(13i)(17i)$

(C) $(7 + 3i)(7 - 3i)$

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

Complex Conjugates

◆ Reverse the _____ of *only* the **imaginary** part of a complex number to get the **conjugate**: $a + bi \Leftrightarrow$

EXAMPLE: Find the conjugate of each complex number.

(A)

$$1 + 2i$$

(B)

$$1 - 2i$$

(C)

$$-1 + 2i$$

◆ Multiplying **complex conjugates** (by FOIL) **ALWAYS** results in a _____ number

EXAMPLE: Find the product.

$$(2 + 3i)(2 - 3i)$$

$$(a + bi)(a - bi) = \underline{\hspace{2cm}}$$

PRACTICE

Find the product of the given complex number and its conjugate.

(A)

$$4 - 5i$$

(B)

$$-7 - i$$

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

Dividing Complex Numbers

- ◆ Dividing by a complex number results in a fraction with i in the bottom: this is **BAD**
- Denominators should **ALWAYS** be real! To do this, multiply by its _____

$$\frac{c}{a + bi}$$

EXAMPLE: Find the quotient. Write answer in standard form.

$$\frac{3}{1 + 2i}$$

DIVIDING COMPLEX NUMBERS

- 1) Multiply **top** AND **bottom** by complex conj. of **bottom** & simplify
- 2) Expand fraction into real & imaginary parts
- 3) Simplify fractions into lowest terms

PRACTICE

Find the quotient. Express your answer in standard form.

$$(A) \frac{6+i}{4-2i}$$

$$(B) \frac{-5+3i}{-7-4i}$$

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

Powers of i

- ◆ Recall: $i = \sqrt{-1}$. Many problems will have i raised to the 2nd, 3rd, or even much higher powers!
- All properties of exponents can be applied to powers of i

POWERS OF i	
$i^1 = \underline{\hspace{2cm}} \rightarrow \underline{\hspace{1cm}}$	$i^5 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
$i^2 = \underline{\hspace{1cm}} \rightarrow \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$i^6 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
$i^3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$i^7 = \underline{\hspace{2cm}} \rightarrow \underline{\hspace{1cm}}$
$i^4 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	$i^8 = \underline{\hspace{2cm}} \rightarrow \underline{\hspace{1cm}}$

- **Any** power of i can **ALWAYS** be simplified to , , or

PRACTICE

Evaluate the following powers of i .

(A) $(3i)^4$

(B) $(4i)^{-3}$

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

How to Evaluate Higher Powers of i

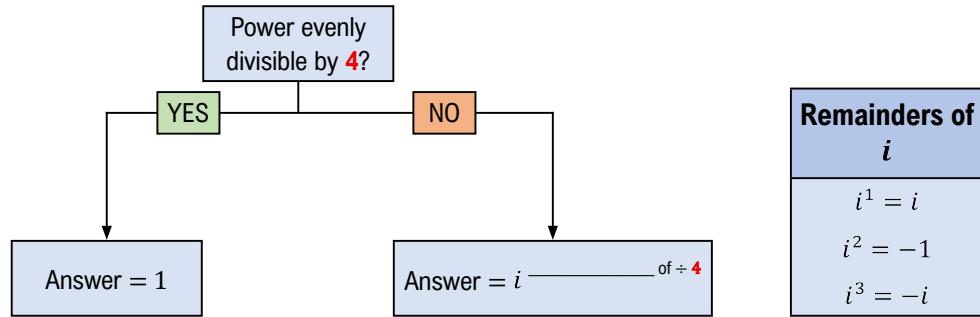
- ◆ We can express powers of i in terms of _____.

EXAMPLE: Simplify the power of i .

(A) $i^{20} = i^4 \cdot i^4 \cdot i^4 \cdot i^4 \cdot i^4$
 $= 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$
 $=$

(B) $i^{22} = i^4 \cdot i^4 \cdot i^4 \cdot i^4 \cdot i^4 \cdot i^4 \cdot i^2$
 $=$
 $=$

- ◆ To evaluate i raised to a *very high* power, here's a shortcut:



EXAMPLE: Simplify the power of i .

(A) i^{100}

(B) i^{22}

(C) i^{67}

PRACTICE

Simplify the power of i .

(A) i^{1003}

(B) i^{85}

TOPIC: MULTIPLYING AND DIVIDING COMPLEX NUMBERS

EXAMPLE

Perform the indicated operation and simplify where possible.

$$(A) \quad i^{12} + i^{15}$$

$$(B) \quad i^8 \times i^5$$

$$(C) \quad \frac{i^{10} + i^{15}}{i^9 - i^{12}}$$