

TOPIC: EVALUATING EXPONENTS

Intro to Exponents

- ◆ When a number is multiplied by itself _____, it can be written using exponents.
- The **base** is the number being _____ & the **exponent/power** is how many _____ the base is multiplied.

New **Exponent Notation**

$8 \cdot 8 \cdot 8 \cdot 8 =$ _____ to the _____ power
_____ multiplied _____ times

$b \cdot b \cdot b \cdot \dots \cdot b =$ _____ to the _____ power
(General Exponent Notation)
_____ multiplied _____ times

EXAMPLE

Find the value of each exponential expression by rewriting as a product.

(A) 7^2 "7 _____"

(B) 10^3 "10 _____"

(C) 2^5

- ◆ A number with *NO* exponent implies an exponent of ___, $b = b^{—}$.

TOPIC: EVALUATING EXPONENTS

PRACTICE

Rewrite each product as an exponential expression.

(A) $3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

(B) $\left(\frac{2}{9}\right) \times \left(\frac{2}{9}\right) \times \left(\frac{2}{9}\right) \times \left(\frac{2}{9}\right) \times \left(\frac{2}{9}\right)$

PRACTICE

Evaluate the following.

(A) 13^1

(B) 7^3

(C) 2^8

EXAMPLE

Evaluate the following.

(A) $\left(\frac{1}{3}\right)^4$

(B) $\left(\frac{7}{4}\right)^3$