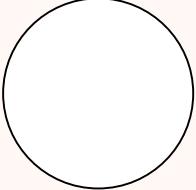
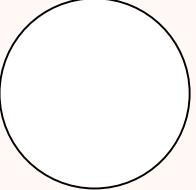
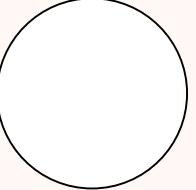


TOPIC: SIMPLIFYING FRACTIONS

Intro to Fractions


◆ A *fraction* represents part of a whole & has a **numerator**, **denominator**, and **fraction bar**: $\frac{a}{b} = \underline{\quad} \div \underline{\quad}$, $b \neq \underline{\quad}$.

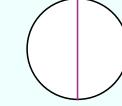
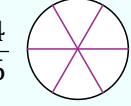
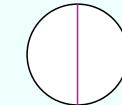
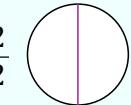
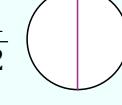
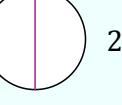
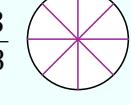
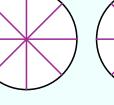

► Get *equivalent fractions* by _____ the numerator & denominator by the same _____.


Fractions

New

$\frac{\underline{\quad} \text{ parts}}{\underline{\quad} \text{ # of } \underline{\quad} \text{ parts}}$

$\frac{a}{b} = \frac{a \cdot \underline{\quad}}{b \cdot \underline{\quad}}$

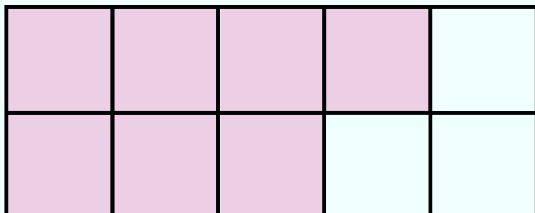








$\frac{1}{2}$

$\frac{2}{4}$

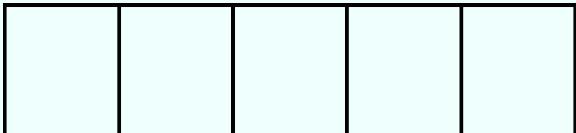
$\frac{3}{6}$

Types of Fractions

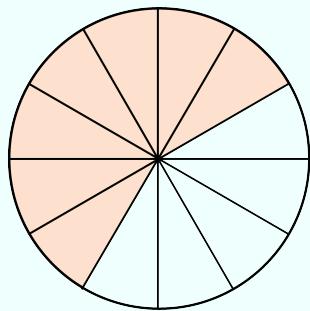
◆ Fractions can be proper, improper, or mixed.

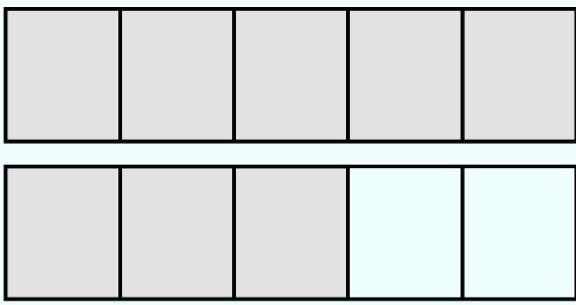

Fraction	Definition	Example
Proper	numerator < denominator: Value is < 1	$\frac{1}{2}$ $\frac{4}{6}$
Improper	numerator > denominator: Value is > 1	$\frac{3}{2}$ $\frac{2}{2}$
Mixed	whole number <i>proper fraction</i>	$1\frac{1}{2}$ $2\frac{3}{8}$

TOPIC: SIMPLIFYING FRACTIONS


EXAMPLE

What fractions are represented by each illustration?


(A)


(B)

(C)

(D)

PRACTICE

From the choices, select the fraction equivalent to the given fraction.

(A) $\frac{3}{5}$

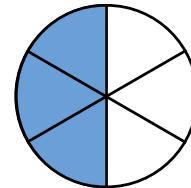
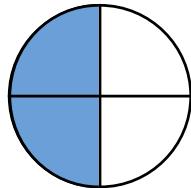
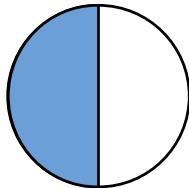
a. $\frac{9}{15}$

b. $\frac{6}{20}$

c. $\frac{15}{5}$

(B) $\frac{11}{4}$

a. $\frac{55}{15}$




b. $\frac{33}{12}$

c. $\frac{66}{18}$

TOPIC: SIMPLIFYING FRACTIONS

Simplify Fractions (Write Fractions in Lowest Terms)

- ◆ Recall: You can get equivalent fractions by *multiplying* the numerator and denominator by the same constant.

$$\frac{1}{2}$$

=

$$\frac{2}{4}$$

=

$$\frac{3}{6}$$

- To **simplify** a fraction into **lowest terms**, factor num. and denom. & *divide out* (_____) greatest common factor.

New Simplifying Fractions

$$\frac{a \cdot c}{b \cdot c} = \quad = \quad = \frac{a}{b}$$

$$\frac{4}{6} = \underline{\hspace{2cm}}$$

- ◆ If GCF isn't obvious, factor num. & denom. into *prime* factors OR choose ____ common factor & work in stages.

EXAMPLE

Simplify the following fractions to lowest terms.

(A)

$$\frac{80}{60}$$

(B)

$$\frac{5}{4}$$

TOPIC: SIMPLIFYING FRACTIONS

PRACTICE

Simplify the following fractions to lowest terms.

(A) $\frac{6}{15}$

(B) $\frac{288}{24}$

(C) $\frac{28}{56}$