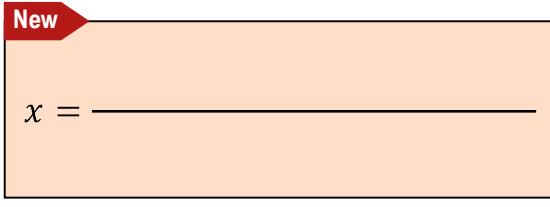


TOPIC: THE QUADRATIC FORMULA

Intro to the Quadratic Formula

- ◆ The solution(s) to _____ quadratic equation $ax^2 + bx + c = 0$ can be found using the **quadratic formula**.



EXAMPLE

Find the solution(s) using the quadratic formula.

(A)

$$2x^2 - 3x - 5 = 0$$

(B)

$$x^2 - 8x + 16 = 0$$

TOPIC: THE QUADRATIC FORMULA

PRACTICE

Find the solution(s) using the quadratic formula.

(A) $x^2 + 6x - 7 = 0$

(B) $\frac{3}{2}z^2 - \frac{5}{4}z - 1 = 0$

(C) $4x^2 - 4x + 1 = 0$

TOPIC: THE QUADRATIC FORMULA

The Discriminant

◆ You can find **how many real** or **imaginary** solutions a quadratic has *WITHOUT* solving by using the discriminant.

► **Discriminant:** the expression under the radical in the quadratic formula.

► _____ determines number/type of solutions: Discriminant is **Positive** = _____ real solution(s)

Zero = _____ real solution(s)

Negative = _____ real solution(s)

_____ _____ solutions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(Discriminant)

(Quadratic Formula)

EXAMPLE: For the following quadratic equations, determine the number and type of solutions. Do not solve.

(A) $2x^2 + 3x - 2 = 0$

(B) $4x^2 + x + 2 = 0$

(C) $x^2 - 10x + 25 = 0$

$b^2 - 4ac$ is: [+ | 0 | -]

$b^2 - 4ac$ is: [+ | 0 | -]

$b^2 - 4ac$ is: [+ | 0 | -]

TOPIC: THE QUADRATIC FORMULA

PRACTICE

Determine the number and type of solutions of the given quadratic equation. Do not solve.

(A)

$$x^2 + 8x + 16 = 0$$

(B)

$$-4x^2 + 4x + 5 = 0$$