
#### **The Filtration Membrane**

- ◆ Filtration Membrane: Membrane between the capillaries and the capsular space.
- ◆ Allows passage of water and any solutes \_\_\_\_\_ than plasma proteins. Has \_\_\_\_\_ layers:

| Fenestrated Endothelium of Glomerular Capillaries                               | Basal Lamina                                                                                                                                     | Filtration Slits of Podocytes                                                            |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Fenestrations allow blood components blood cells and platelets to pass through. | Thin layer of extracellular matrix between other two layers.  Has negative charge;  negatively charged plasma proteins  (ex: albumin, globulin). | 'Foot processes' wrap around the glomerular capillaries and interlace to form filtration |
| Gaps are large: nm.                                                             | Gaps are approx nm.                                                                                                                              | Gaps are approx nm.                                                                      |

• The filtrate in the capsular space contains water, ions, nutrients, and waste products.



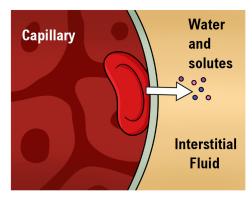
#### **EXAMPLE**

Which of the following would NOT be able to pass through the fenestrated endothelium of the glomerular capillaries?

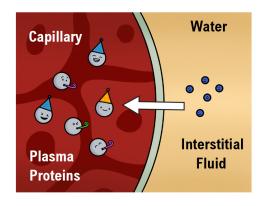
a) lons.

c) Red blood cells.

b) Water molecules.


d) Glucose.

| PRACTICE                                                   |  |  |  |  |
|------------------------------------------------------------|--|--|--|--|
| The is the <i>finest</i> layer of the filtration membrane. |  |  |  |  |
| a) Fenestrated endothelium of the glomerular capillaries.  |  |  |  |  |
| b) Basal lamina.                                           |  |  |  |  |
| c) Filtration slits of the podocytes.                      |  |  |  |  |


#### **Overview of Filtration Pressures**

- ◆ Recall: There are \_\_\_\_\_ main forces that drive fluid movement in a capillary bed:
  - 1. **Hydrostatic Pressure:** Force of a fluid on the \_\_\_\_\_ of its container. Usually \_\_\_\_ to blood pressure.
    - Pushes water and solutes \_\_\_\_\_ of the capillary.
  - 2. Colloid Osmotic Pressure (COP): Pressure created by \_\_\_\_\_\_ (primarily albumin) in the plasma.
    - Proteins create osmotic gradient that pulls water \_\_\_\_\_ the capillaries.
- ◆ Net Filtration Pressure (NFP): Determines \_\_\_\_\_\_ of fluid movement between capillaries and interstitial fluid.

## **Hydrostatic Pressure**



#### **Colloid Osmotic Pressure**



#### **EXAMPLE**

Water moves out of the capillary if \_\_\_\_\_\_ is higher than \_\_\_\_\_.

- a) Colloid osmotic pressure; hydrostatic pressure
- b) Hydrostatic pressure; colloid osmotic pressure

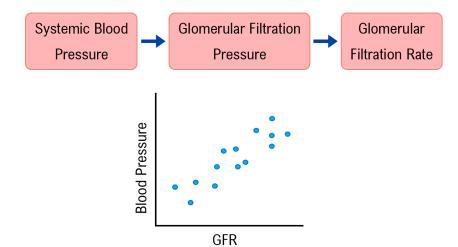
### **Glomerular Filtration Pressure**

◆ Glomerular filtration pressure (GFP) is determined by \_\_\_\_\_ factors:

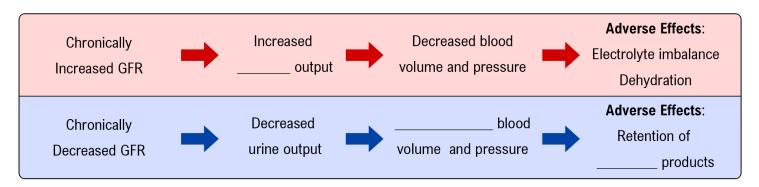
|             | Glomerular Hydrostatic Pressure (GHP)                                                                              | Capsular Hydrostatic Pressure<br>(CHP)                    | Glomerular Colloid Osmotic Pressure (GCOP)                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|
| Principle   | Hydrostatic Pressure.                                                                                              | Hydrostatic Pressure.                                     | Colloid Osmotic Pressure.                                                            |
| Description | Determined by<br>blood pressure.<br>High resistance causes blood to<br>push on walls of glomerular<br>capillaries. | Filtrate in space builds up its own hydrostatic pressure. | High concentration of plasma proteins (ex: albumin) in capillaries creates gradient. |
| Movement    | filtration: Pushes fluid through filtration membrane.                                                              | filtration: Pushes fluid back into capillaries.           | Opposes filtration: Osmotic gradient draws water capillaries.                        |
| Force       | mm Hg                                                                                                              | mm Hg                                                     | mm Hg                                                                                |
|             |                                                                                                                    |                                                           |                                                                                      |

◆ Glomerular filtration pressure is about 10 mm Hg - \_\_\_\_\_ movement through the filtration membrane.

Solve for net filtration pressure using the following equation: NFP = GHP - (CHP + GCOP).


### PRACTICE

In the process of filtrate formation, which of the following factors creates an osmotic gradient?


- a) Systemic blood pressure.
- b) A high concentration of negative ions in the capillaries.
- c) A high concentration of plasma proteins in the capillaries.
- d) A low concentration of water in the capsular space.

#### **Glomerular Filtration Rate**

- Glomerular filtration *pressure* \_\_\_\_\_ impacts the glomerular filtration *rate*.
- ◆ Glomerular Filtration Rate (GFR): Amount of \_\_\_\_\_\_ formed by both kidneys in 1 minute (about 125 ml/min).
- ◆ On average, in \_\_\_\_\_ individuals, blood pressure and GFR are positively correlated.



• GFR is regulated due to its impact on blood volume, pressure, and general homeostasis.



#### **EXAMPLE**

Kaitlyn is a 25-year-old women. She has no underlying health conditions and does not take any medications. When her blood pressure increases, which outcome would you expect to see?

- a) Blood pressure increase → GFP decrease → GFR increase
- b) Blood pressure increase → GFP increase → GFR increase
- c) Blood pressure increase → GFP increase → GFR decrease
- d) Blood pressure increase → GFP decrease → GFR decrease

# PRACTICE

Which of the following is a possible consequence of a prolonged or chronic decrease in glomerular filtration rate?

- a) Dehydration.
- b) Leukemia.
- c) Edema (swelling).
- d) Hypotension.