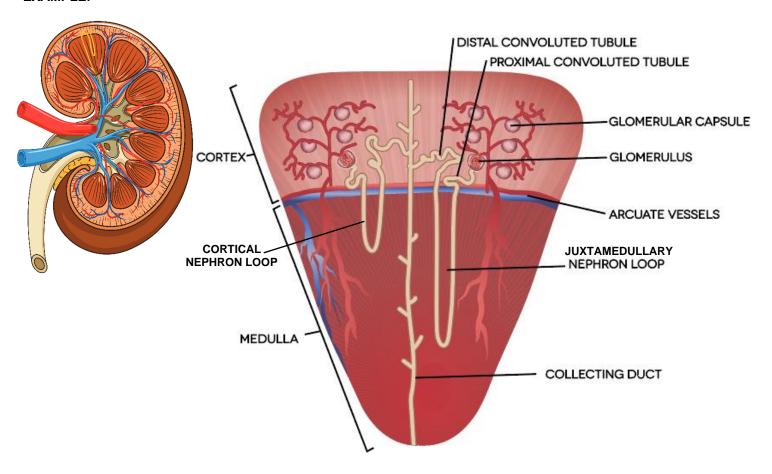

TOPIC: FLUID BALANCE

- Osmoregulation regulation of solute balance and water loss to maintain homeostasis of water content
- Excretion process of eliminating waste from the body, like nitrogenous waste
- Kidney bean-shaped organs that filter blood plasma, and form urine
- *Ureter* transport urine from the kidney to the bladder
- Bladder organ that stores urine for elimination through the urethra
- *Urethra* opening through which urine leaves

EXAMPLE: Urinary System Diagram

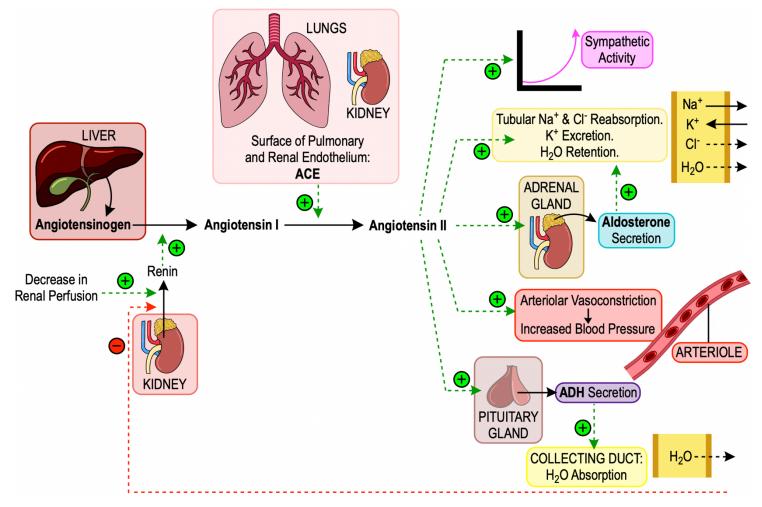
- Nitrogenous waste nitrogen-containing metabolic wastes
 - □ *Ammonia* toxic substance that must be heavily diluted, forms from the breakdown of proteins and nucleic acids
 - □ **Urea** requires energy to produce, but is far less toxic than ammonia, excreted with minimal water loss
 - □ *Uric acid* mostly insoluble, so excreted with almost no water loss, but energy intensive to produce
 - ☐ Type of waste tied to evolutionary history, habitat, and osmotic stress
 - ☐ Fitness trade-off between energetic cost of excreting waste and conserving water


EXAMPLE:

$$H^{NN}$$
 H
 H_2N
 NH_2
 H_2N
 NH_2

TOPIC: FLUID BALANCE

- Kidney is mostly made of nephrons, small specialized structures that carry out the filtration and formation of urine
 - □ **Cortex** outer layer of the kidney
 - □ *Medulla* inner, "saltiest" layer of the kidney
- Nephron functional unit of the kidney made of tubule structures that transport filtrate surrounded by blood vessels
 - □ Nephron uses active transport of solutes to create a "salty" environment to reabsorb lots of water
 - □ **Cortical nephron** most common type of nephron that doesn't extend as deeply into the medulla
 - □ **Juxtamedullary nephron** responsible for generating and maintaining strong osmotic gradient for reabsorption


EXAMPLE:

TOPIC: FLUID BALANCE

- Renin-Angiotensin-Aldosterone-System controls blood volume homeostasis, increases water and salt reabsorption
 - □ Renin is released by juxtaglomerular apparatus in response to drops in blood pressure or volume
 - □ Renin leads to the cleavage of angiotensin □ angiotensin II
 - ☐ Angiotensin II raises blood pressure by vasoconstriction, and stimulates adrenal cortex to release aldosterone
- Aldosterone stimulates distal tubule and collecting duct to reabsorb more salt
 - □ Water follows reabsorption of salt, leading to increased blood volume and pressure
 - Isosmotic increase in blood volume because water and salt absorbed together
 - □ Pituitary hormone ACTH also stimulates release of aldosterone

EXAMPLE:

