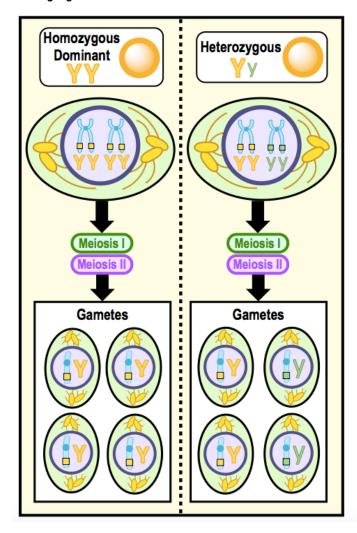
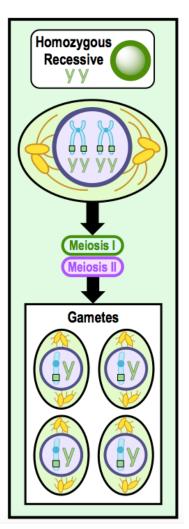
CONCEPT: MENDEL'S LAWS

•Through his research with pea plants, Gregor Mendel proposed 2 fundamental laws of genetics:

1) Law of _____

&


2) Law of ______ Assortment


1) Law of Segregation

•During gamete formation, 2 alleles of the same gene ______ & end up in _____ gametes.

□ In other words, *gametes* are _____ & only receive ____ copy of a gene/allele.

EXAMPLE: Law of Segregation.

PRACTICE: According to Mendel's Law of Segregation, which of the following is a true statement?

- a) Each gamete receives both of the parent's alleles for each gene.
- b) Dominant alleles segregate into gametes more frequently than recessive alleles.
- c) Alleles segregate into different gametes with equal frequency.
- d) Recessive alleles segregate into gametes more frequently than dominant alleles.

CONCEPT: MENDEL'S LAWS

PRACTICE: Mendel's observation of the segregation of alleles in gamete formation has its basis in which of the following phases of cell division?

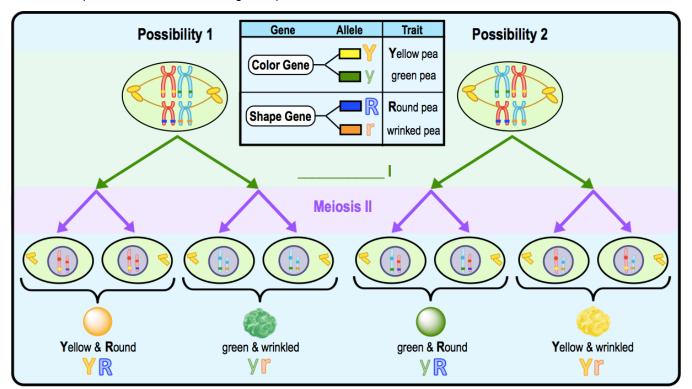
a) Prophase I of meiosis.

c) Anaphase II of meiosis.

b) Metaphase II of meiosis.

d) Anaphase I of meiosis.

2) Law of Independent Assortment


• Recall: Independent assortment, homologous chromosomes randomly align on the metaphase I plate during meiosis I.

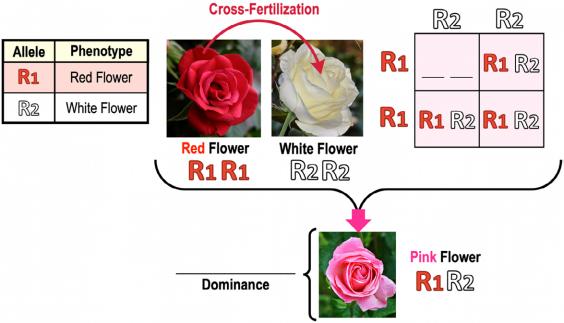
•Law of Independent Assortment: allele segregation of one gene does ______ affect the segregation of another gene.

□ Allows for gametes with _____ combinations of alleles from different genes.

□ Mendel monitored the inheritance of *multiple* genes to make this discovery using _____ *crosses*.

EXAMPLE: Independent Assortment During Metaphase I of Meiosis I.

PRACTICE: Mendel's law of independent assortment has its basis in which of the following events of meiosis I?

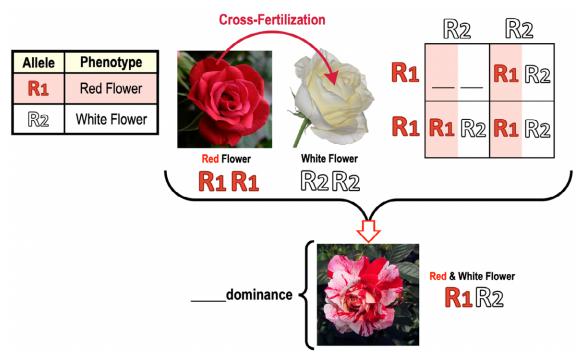

- a) Synapsis of homologous chromosomes.
- b) Crossing over of homologous pairs of chromosomes.
- Alignment of pairs of homologous chromosomes along the middle of the cell.
- d) The division of cells during cytokinesis.

CONCEPT: INCOMPLETE DOMINANCE VS. CODOMINANCE

Incomplete Dominance

•Heterozygotes show a _____ phenotype that is an *intermediate* of the phenotypes from the two alleles.

EXAMPLE: Incomplete Dominance in Red & White Flower Cross Makes Pink "Baby" Flowers.



Codominance

●Heterozygotes _____ express both phenotypes from each allele in "patches".

□ 2 different alleles "dominate" _____ (one allele does _____ mask expression of the other).

EXAMPLE: Codominance in Red & White Flowers.

CONCEPT: INCOMPLETE DOMINANCE VS. CODOMINANCE

PRACTICE: You cross two true breeding lines of petunia. One produces red flowers and the other white flowers. The F1 offspring all show pink flowers. You conclude from this that:

- a) Red is dominant.
- b) White is dominant.
- c) Red is incompletely dominant.
- d) Red is incompletely recessive.
- e) None of the answers listed above are correct.

Codominance & Blood Type

●Blood-type in humans is a common example of	_dominance.
□ Blood type is determined by combinations of	possible alleles: I ^A , I ^B , or <i>i</i> .
□ I ^A & I ^B alleles are,	whereas the <i>i</i> allele is

EXAMPLE: ABO Blood Types.

Genotype	Surface Molecules	Phenotype
I ^A I ^A or I ^A i	(A) Only	A-A-A Type blood
I ^B I ^B or I ^B i	B Only	B B B Type blood
I _V I _B	(A) and (B)	Type blood
ii	NONE	- Type blood

PRACTICE: If you look at a blood sample from a person who is heterozygous at the sickle cell locus you will see both normal circular red blood cells and sickle-shaped red blood cells. This is an example of

- a) multi-locus inheritance.
- d) codominance.

b) complete dominance.

- e) linked genes.
- c) incomplete dominance.

CONCEPT: INCOMPLETE DOMINANCE VS. CODOMINANCE

PRACTICE: A gene for the MN blood group has codominant alleles M and N. If both children in a family are of blood type M, which of the following situations is possible?

- a) Each parent is either M or MN.
- b) Each parent must be type M.
- c) Both children are heterozygous for this gene.
- d) Neither parent can have the N allele.

PRACTICE: The number of different alleles for ABO blood types is _____ resulting in _____ different blood types.

- a) 3; 3.
- b) 4; 3.
- c) 6; 3.
- d) 3; 4.
- e) 2; 4.

CONCEPT: EPISTASIS

●Epistasis: inheritance pattern where	gene's product	_ the phenotype of	gene.
Epistasis in Blood Type			
●H protein serves as a "	_" molecule attaching A & B mo	lecules to the surfaces of blood ce	lls.
☐ The recessive allele (h) encodes an	form that doe	es connect A or B to bloo	od cells.

□ Even if a person has alleles I^A or I^B, they will have type _____ blood if they are *homozygous recessive* (*hh*).

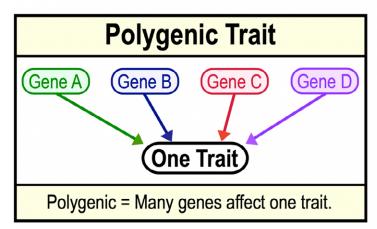
□ In other words, one gene (_____) affects the expression of another gene (I^A or I^B).

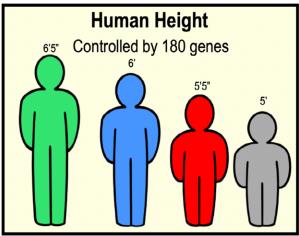
EXAMPLE: Epistasis causes inconsistencies in inheritance of blood-types.

Genotype	Phenotype	
I ^A _ & H_	H protein Type blood	
I ^A _ & hh	A H protein Type blood **Epistasis: one gene (H gene) affects expression of another gene (I ^A gene).	

PRACTICE: Which of the following statements best describes epistasis?

- a) An allele that changes the genotype of another allele.
- b) A gene that changes the genotype of another gene.
- c) A gene that controls or masks the expression of another gene.
- d) A gene that changes the genotype of the organism.
- e) None of the above.


CONCEPT: NON-MENDELIAN GENETICS


Polygenic Inheritance

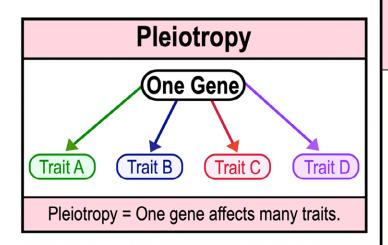
Most inherited traits are

□ **Polygenic Trait**: a *single* phenotypic trait affected by _____ *genes*.

EXAMPLE: Polygenic Inheritance.

PRACTICE: Which of the following phenotypes is an example of polygenic inheritance?

- a) White or purple flower color in pea plants.
- b) Yellow or green pea color in pea plants.


- c) The ABO blood groups in humans.
- d) Skin pigmentation in humans.

Pleiotropy

Pleiotropy is practically the ______ of polygenic.

□ Pleiotropy: a single _____ has effects on _____ phenotypic traits.

EXAMPLE: Marfan Syndrome.

Marfan Syndrome

Mutation of the *FBN1* gene
Limits the body's ability to build connective tissue.

Marfan Syndrome Phenotypes:

Tall and slender body.

Long arms, legs, & fingers.

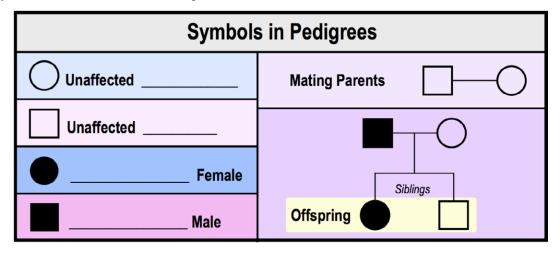
Curved spine.

Crooked or crowded teeth.

Heart disease & heart mumurs.

Eye conditions (Ex. Vision Loss).

CONCEPT: NON-MENDELIAN GENETICS


PRACTICE: A pleiotropic genetic disorder typically has what characteristics?

- a) A single gene is mutated resulting in the change of one phenotypic trait.
- b) A single gene is mutated resulting in the change of many phenotypic traits.
- c) Many genes are mutated resulting in the change of one phenotypic trait.
- d) Many genes are mutated resulting in the change of many phenotypic traits.

CONCEPT: PEDIGREES

Pedigree: a chart or "family tree" depicting family	& tracking a phenotype over many generations
□ Circles (○) =	□ Squares (
□ Shaded/colored shapes =	individuals with the phenotype.
□ lines connect two ma	iting parents & lines connect parents to offspring.

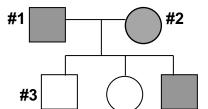
EXAMPLE: Symbols & Connections on a Pedigree.

CONCEPT: AUTOSOMAL INHERITANCE

•A specific family trait/disorder can be tracked over multiple generations to identify the ______ pattern.

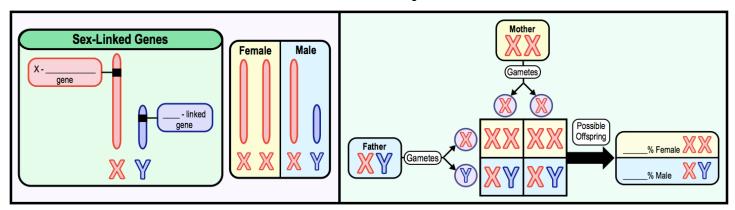
□ Inheritance patterns can either be ______ or ____-linked.

PRACTICE: The pedigree chart shown depicts the inheritance pattern of ______.



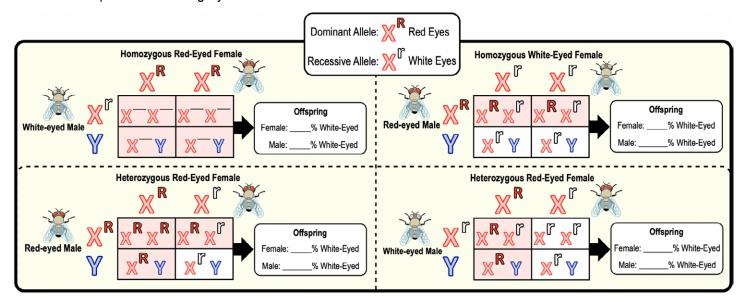
Pattern I

- a) An autosomal recessive characteristic with both parents being heterozygous.
- b) An autosomal dominant characteristic with both parents being homozygous dominant.
- c) An autosomal recessive characteristic with both parents being homozygous recessive.
- d) None.


PRACTICE: Determine the likely pattern of inheritance in the following pedigree. List the genotypes of the numbered individuals in this order: #1, #2, and #3.

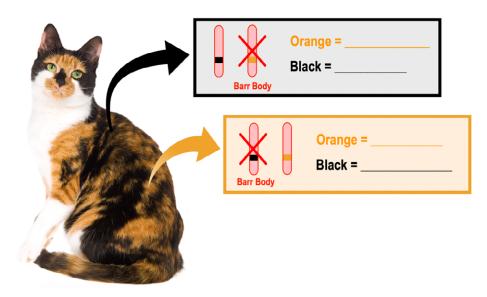
- a) aa, aa, aa.
- b) Aa, Aa, Aa.
- c) Aa, Aa, aa.
- d) AA, Aa, aa.
- e) None of the above.

CONCEPT: SEX-LINKED INHERITANCE


- •Recall: sex chromosomes (X or Y) determine the _____ of an organism.
 - □ Female (♀): X □ Male (♂): X □
- •_____-Linked Genes: genes found on either sex chromosome (X or Y).
 - □ X-chromosome contains ~1,100 ____-linked genes. □ Y-chromosome contains ~100 ____-linked genes.
 - □ With each fertilization, there is a _____% chance of having a female.

X-Linked Inheritance

- •Females have _____ alleles for each X-linked gene (one allele inherited from _____ parent).
 - □ Therefore, females can be _____zygous dominant/recessive or ____zygous for X-linked genes.
- •Males have _____ allele for each X-linked gene (____ inherited from mother; ____ inherited from father).
 - □ Therefore, _____ express whatever X-linked allele is on their *single* X-chromosome.


EXAMPLE: Experiment Tracking Eye Color in Fruit Flies Revealed X-Linked Inheritance Pattern.

CONCEPT: X-INACTIVATION

Females (XX	() inherit "double" the number of X-	linked genes, but d	lo	have double expression of those genes
□ Fem	nale cells <i>randomly</i> turn	(or inactivate) one	of their X-ch	nromosomes during early development.
□ Bar	r Body : the highly condensed,	·	X-chromoso	me in female cells.
□ Ran	dom X-inactivation can result in a	female expressing	different alle	eles of an X-linked gene in different cells.

EXAMPLE: Calico Cats Have Color Patches Due to X-Inactivation.

PRACTICE: A Barr body is:

- a) An inactive Y chromosome.
- c) An inactive X chromosome.
- b) An active X chromosome.
- d) An active Y chromosome.